-
双金属层SPR传感器的结构如图 1所示。考虑入射光波长为633nm的情况,BK7玻璃棱镜折射率n0= 1.51509,银膜的介电常数εAg=-17.81+0.676i[16],金膜的介电常数εAu=-10.98+1.464i,待测样品折射率为ns=1.33,图中θi与θr分别代表光波的入射角以及反射角。
根据薄膜光学理论,双金属层SPR传感器结构可视为图 2所示的等效双层膜模型,其中银膜的折射率和厚度分别为n1和d1,金膜的折射率和厚度分别为n2和d2。
考虑p偏振光入射的情况,基于菲涅耳公式,可得到入射界面与出射界面电场强度(E0与E3)及磁场强度(H0和H3)之间的关系式:
$ \left[ {\begin{array}{*{20}{c}} {{E_0}}\\ {{H_0}} \end{array}} \right]{\rm{ = }}\left[ {\begin{array}{*{20}{c}} {{\rm{cos}}{\delta _1}}&{{\rm{isin}}{\delta _1}/{\eta _1}}\\ {{\rm{i}}{\eta _1}{\rm{sin}}{\delta _1}}&{{\rm{cos}}{\delta _1}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{\rm{cos}}{\delta _2}}&{{\rm{isin}}{\delta _2}/{\eta _1}}\\ {{\rm{i}}{\eta _2}{\rm{sin}}{\delta _2}}&{{\rm{cos}}{\delta _2}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{E_3}}\\ {{H_3}} \end{array}} \right] $
(1) 式中,${\delta _i} = \frac{{2{\rm{ \mathsf{ π} }}}}{\lambda }{n_i}{d_i}{\rm{cos}}{\theta _i}\left( {i = 1,2} \right)$, θi为第i层膜中的折射角,ηi=ni/cosθi为入射光在薄膜中的导纳。
由于入射介质的等效导纳Y=H0/E0,并且H3/E3= η3,则:
$ \begin{array}{c} {E_0}\left[ {\begin{array}{*{20}{c}} 1\\ Y \end{array}} \right]{\rm{ = }}\left[ {\begin{array}{*{20}{c}} {{\rm{cos}}{\delta _1}}&{{\rm{isin}}{\delta _1}/{\eta _1}}\\ {{\rm{i}}{\eta _1}{\rm{sin}}{\delta _1}}&{{\rm{cos}}{\delta _1}} \end{array}} \right] \times \\ \left[ {\begin{array}{*{20}{c}} {{\rm{cos}}{\delta _2}}&{{\rm{isin}}{\delta _2}/{\eta _1}}\\ {{\rm{i}}{\eta _2}{\rm{sin}}{\delta _2}}&{{\rm{cos}}{\delta _2}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 1\\ {{\eta _3}} \end{array}} \right]{E_3} \end{array} $
(2) 因此,双层膜系的特征矩阵可以写成:
$ \begin{array}{c} \left[ {\begin{array}{*{20}{c}} 1\\ Y \end{array}} \right]{\rm{ = }}\left[ {\begin{array}{*{20}{c}} {{\rm{cos}}{\delta _1}}&{{\rm{isin}}{\delta _1}/{\eta _1}}\\ {{\rm{i}}{\eta _1}{\rm{sin}}{\delta _1}}&{{\rm{cos}}{\delta _1}} \end{array}} \right] \times \left[ {\begin{array}{*{20}{c}} {{\rm{cos}}{\delta _2}}&{{\rm{isin}}{\delta _2}/{\eta _1}}\\ {{\rm{i}}{\eta _2}{\rm{sin}}{\delta _2}}&{{\rm{cos}}{\delta _2}} \end{array}} \right] \times \\ \left[ {\begin{array}{*{20}{c}} 1\\ {{\eta _3}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} B\\ C \end{array}} \right] \end{array} $
(3) 式中, B与C为表征薄膜系统光学特性的参量。
而整个薄膜系统对入射光波的能量反射率为:
$ R = {\left| {\frac{{{\eta _0}B - C}}{{{\eta _0}B + C}}} \right|^2} $
(4) 式中, η0是入射介质的导纳。
另外,在角度调制情况下,若θc代表SPR传感器最低反射率对应的角度(称为共振角),则传感器的灵敏度Sθ通常定义为共振角的变化值Δθc与样品折射率射率的变化值Δns的比值,即:
$ {S_\theta } = \Delta {\theta _{\rm{c}}}/\Delta {n_{\rm{s}}} $
(5) -
反射谱共振峰棱镜型SPR传感器实现有效检测的前提条件是表面等离子体共振峰明显,即共振峰峰值反射率尽可能小,因此,本文中首先研究了不同金属厚度下,银-金双金属层SPR传感器共振角处的反射率Rc,如图 3所示。其中银膜厚度d1和金膜厚度d2取值范围均为0nm~50nm。在保证共振峰峰值尽可能低(Rc < 0.01)的前提下,银-金双金属层厚度取值存在一个范围,如图 3中阴影部分所示, 代表Rc < 0.01的区域。
图 4为满足Rc < 0.01条件时,双金属层中金膜厚度取值带宽Δd2随银膜厚度d1的变化曲线以及双金属层中银膜厚度取值带宽Δd1随金膜厚度d2的变化曲线。由图可知,Δd2随银膜厚度d1的增大而减小,而Δd1随金膜厚度d2的增大几乎保持不变。例如,当d1从0nm增加到40nm时,Δd2从5.1nm减小到2.9nm; 而d2从0nm增加到40nm时,Δd1始终维持在4.5nm左右。
-
为了研究银-金双金属层传感器的灵敏度特性,本文中计算出了该结构传感器灵敏度随银膜厚度d1和金膜厚度d2变化的等高线图,如图 5所示。其中d1和d2的取值范围与图 3中一致,虚线框部分与图 3阴影部分一致,代表Rc < 0.01的薄膜厚度区域。
Figure 5. Contour map of sensitivity S of bimetallic film SPR sensor vs. thicknesses of Ag and Au films (d1-d2)
由图 5可知,当双金属层SPR传感器中金属薄膜厚度变化时,传感器灵敏度变化范围为:40°/RIU~170°/RIU(这里用°/RIU作为灵敏度的单位,它表示在1个折射率变化单位内共振角的变化值)。由于共振角处反射率越高SPR传感器性能越差,因此,仅考虑满足Rc < 0.01条件下传感器的灵敏度特性,即图 5中虚线框区域。从图 5虚线框区域可以看出,在同一银膜(或金膜)厚度下,传感器灵敏度随着金膜(或银膜)厚度的增加而升高(2°/RIU~5°/RIU),因此,可以通过选择Rc < 0.01虚线框区域部分上边缘线对应的双金属膜厚度值,提高双金属层SPR传感器的灵敏度。
图 6中给出了在样品折射率为1.325和1.335时,两种不同银-金薄膜厚度组合下双金属层SPR传感器的共振峰曲线。其中第1组银-金薄膜厚度组合为30nm~14.1nm(双金属层结构Ⅰ), 可实现共振角处反射率最小值。第2组取银膜厚度30nm时, 图 5中虚线框区域上边缘线对应的银-金厚度组合30nm~16.1nm(双金属层结构Ⅱ)。当折射率改变时,共振角的变化值如表 1所示。双金属层结构Ⅰ,当样品折射率从1.325变为1.335时,共振角从70.0096°变为了71.3538°,对应的灵敏度值为134.4231°/RIU; 双金属层结构Ⅱ,对应相同的样品折射率变化,共振角从70.275°变为71.6538°,对应的灵敏度为137.8846°/RIU。相比双金属层结构Ⅰ,双金属层结构Ⅱ的SPR传感器在保证共振峰反射率峰值小于0.01的前提下,通过适当提高金膜厚度,灵敏度提高了3.4615°/RIU。由此可见,在保证传感器低共振角反射率特性的前提下,可通过适当提高金属薄膜的厚度来提高传感器的灵敏度。
Figure 6. Relationship between reflectivity of bimetallic film SPR sensors and θ with two different thickness combinations
Table 1. θc and Sθ of two configurations
configurations θc, 1/(°) θc, 2/(°) Sθ/(°·RIU-1) bimetallic layer Ⅰ
(d1=30nm, d2=14.1nm)70.0096 71.3538 134.4231 bimetallic layer Ⅱ
(d1=30nm, d2=16.1nm)70.275 71.6538 137.8846
双金属层表面等离子体共振传感器灵敏度优化
Sensitivity optimization of bimetallic film surface plasmon resonance sensor
-
摘要: 为了优化表面等离子体共振传感器的灵敏度,基于薄膜光学理论,分析了银-金双金属层表面等离子体共振传感器的反射率和灵敏度随金属薄膜厚度变化的规律。发现在满足共振角反射率小于1%的条件下,银膜和金膜厚度存在一定的取值范围; 在此厚度范围内,传感器的灵敏度随着金属薄膜(银膜与金膜)厚度的增大而提高,灵敏度增量最大可达5°/RIU。结果表明,在保证一定共振角反射率的前提下,可通过增加双金属层中金属薄膜的厚度提高双金属层表面等离子体共振传感器的灵敏度。Abstract: To optimize the sensitivity of surface plasmon resonance (SPR) sensors, the reflectivity and sensitivity variances of bimetallic film SPR sensors with the change of silver-gold film thickness were studied based on thin film theory. The thickness of silver film and gold film had a certain range under the condition that resonance angle reflectivity was less than 1%. In the range of thickness, the sensitivity of bimetallic film SPR sensor increases with the increase of the thickness of silver film (or gold film). The increment of sensitivity was up to 5°/RIU. The results indicate that the sensitivity of bimetallic film SPR sensor can be improved by increasing the thickness of bimetallic film under the premise of certain resonance angle reflectivity.
-
Key words:
- sensor technique /
- surface plasmon resonance /
- bimetallic film /
- sensitivity
-
Table 1. θc and Sθ of two configurations
configurations θc, 1/(°) θc, 2/(°) Sθ/(°·RIU-1) bimetallic layer Ⅰ
(d1=30nm, d2=14.1nm)70.0096 71.3538 134.4231 bimetallic layer Ⅱ
(d1=30nm, d2=16.1nm)70.275 71.6538 137.8846 -
[1] NYLANDER C, BO L, LIND T. Gas detection by means of surface plasmon resonance[J]. Sensors and Actuators, 1982, 3(82): 79-88. [2] MALIC L, CUI B, VERES T, et al.Enhanced surface plasmon resonance imaging detection of DNA hybridization on periodic gold nanoposts[J]. Optics Letters, 2007, 32(21): 3092-3094. doi: 10.1364/OL.32.003092 [3] SHANKARAN D R, GOBI K V, MIURA N.Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest[J]. Sensors and Actuators: Chemical, 2007, B121(1): 158-177. [4] HOMOLA J.Present and future of surface plasmon resonance biosensors[J]. Analytical and Bioanalytical Chemistry, 2003, 377(3): 528-539. doi: 10.1007/s00216-003-2101-0 [5] GUPTA G, KONDOH J.Tuning and sensitivity enhancement of surface plasmon resonance sensor[J]. Sensors and Actuators: Chemical, 2007, B122(2): 381-388. [6] LECARUYER P, CANVA M, ROLLAND J. Metallic film optimization in a surface plasmon resonance biosensor by the extended Rouard method[J]. Applied Optics, 2007, 46(12): 2361-2369. doi: 10.1364/AO.46.002361 [7] HOMOLA J, KOUDELA I, YEE S S. Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison[J]. Sensors and Actuators: Chemical, 1999, B54(1/2): 16-24. [8] ALLEYNE C J, KIRK A G, MCPHEDRAN R C, et al. Enhanced SPR sensitivity using periodic metallic structures[J]. Optics Express, 2007, 15(13): 8163-8169. doi: 10.1364/OE.15.008163 [9] HU C. Surface plasmon resonance sensor based on diffraction grating with high sensitivity and high resolution[J]. Optik—International Journal for Light and Electron Optics, 2011, 122(21): 1881-1884. doi: 10.1016/j.ijleo.2010.10.044 [10] SHUKLA S, SHARMA N K, SAJAL V. Sensitivity enhancement of a surface plasmon resonance based fiber optic sensor using ZnO thin film: a theoretical study[J]. Sensors and Actuators: Chemical, 2015, B206(23): 463-470. [11] BENKABOU F, CHIKHI M. Theoretical investigation of sensitivity enhancement in dielectric multilayer surface plasmon sensor[J]. Physica Status Solidi: Applied Research, 2014, A211(3): 700-704. [12] FU Y L, KONG L G, FU J, et al. Surface plasmon resonance optical sensor by using a Ag-SnO2 thin film layer[J]. Laser Technology, 2007, 31(3):250-252 (in Chinese). [13] LAHAV A, AUSLENDER M, ABDULHALIM I. Sensitivity enhancement of guided-wave surface-plasmon resonance sensors[J]. Optics Letters, 2008, 33(21): 2539-2541. doi: 10.1364/OL.33.002539 [14] SHALABNEY A, ABDULHALIM I. Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors[J]. Sensors and Actuators: Physical, 2010, A159(1): 24-32. [15] WU S, HO H. Sensitivity improvement of the surface plasmon resonance optical sensor by using a gold-silver transducing layer[C]//Proceedings of Electron Devices Meeting. New York, USA: IEEE, 2002: 63-68. [16] ONG B H, YUAN X, TJIN S C, et al. Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor[J]. Sensors and Actuators: Chemical, 2006, B114(2): 1028-1034. [17] YUAN X, ONG B, TAN Y, et al. Sensitivity-stability-optimized surface plasmon resonance sensing with double metal layers[J]. Journal of Optics, 2006, A8(11): 959-963. [18] CHEN Y, ZHENG R, ZHANG D, et al. Bimetallic chips for a surface plasmon resonance instrument[J]. Applied Optics, 2011, 50(3): 387-391. doi: 10.1364/AO.50.000387 [19] KIM S. Nearly perfect absorption by bimetallic surface plasmonic crystal and its application as sensor[J]. IEEE Photonics Technology Letters, 2014, 26(12): 1259-1262. doi: 10.1109/LPT.2014.2320907