Investigation on quasi-lossless transmission system based on hybrid pumping Raman amplification
-
摘要: 为了实现信号光在光纤链路上的准无损传输,采用在光纤两端对称注入1阶和2阶喇曼抽运的高阶喇曼放大方法,对该结构下的光纤准无损传输系统建立了理论仿真模型,并对该系统进行了仿真优化,研究了在不同的1阶和2阶抽运功率组合方案下,系统总功率消耗和信号沿光纤功率平坦度的变化,以及信号光功率和光纤长度对系统性能指标的影响。结果表明,采用过高功率(大于1mW)的入射信号光,会恶化系统整体性能;当光纤的长度过长时(大于60km),系统的平坦度指标恶化明显。采用该方案能实现60km的准无损传输,并且可以通过系统所需能耗和信号平坦度的实际需求,设计出不同的抽运功率组合方案。Abstract: In order to realize quasi lossless transmission of signal light on optical fiber link, by using high-order Raman amplification method of injecting the first order and the second order Raman pumping into both ends of fiber symmetrically, the numerical model of fiber optical quasi-lossless transmission system was built and the opmization of the system was carried out. The total power consumption and signal power variation with different pump power combinations of the first order and the second order Raman pump were investigated. The influence of signal power and fiber length on system performance index was studied. The results indicate that, system performance will be worse when signal power is higher than 1mW. And system flatness will be worse obviously when fiber length is longer than 60km. Quasi-lossless transmission can be realized along 60km fiber by utilizing this scheme and different pumping power combination schemes can be designed according to the actual demand of energy consumption and signal flatness.
-
-
Table 1 Parameters used in simulation
wavelength/nm α /(dB·km-1) ε /km-1 g /(W-1·km-1) 1365 0.38 1×10-4 0.53 1455 0.27 6×10-5 0.43 1550 0.2 4.5×10-5 — Table 2 System parameters with different pump power combinations
power(1365nm)/W 0 0.2 0.4 0.6 0.8 power(1455nm)/W 0.207 0.126 0.0685 0.0349 0.0182 ratio(1365nm)/% 0 61.3 85.4 94.5 97.8 -
[1] WINZER P J, ESSIAMBRE R J. Advanced modulation formats for high-capacity optical transport networks[J]. Journal of Lightwave Technology, 2006, 24(12):4711-4728. DOI: 10.1109/JLT.2006.885260
[2] HEADLEY C, AGRAWAL G P. Raman amplification in fiber optical communication systems[M].San Diego, USA:Academic Press, 2005:13-366.
[3] ZHOU W J, WANG R B, LI Z R. Experiment study of distributed fiber Raman amplifiers[J]. Laser Technology, 2010, 34(3):373-376(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201003015
[4] ZHANG Z X, WANG J F, LI Ch X, et al. Experimental research of S-band distributed fiber Raman amplifier[J].Journal of Optoelectronics·Laser, 2004, 15(5):557-560(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDZJ200405013.htm
[5] XUE F, QIU K. A design method of broadband fiber Raman amplifiers[J].Journal of Optoelectronics·Laser, 2003, 14(4):372-375(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDZJ200304011.htm
[6] ZHOU W J, LI Z R, WANG R B. Numerical simulation and analysis of C+L bandwidth fiber Raman amplifier using multi-wavelength pumps[J]. Laser Technology, 2011, 35(6):778-780(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201106015
[7] AGRAWAL G P. Nonlinear fiber optics[M]. San Diego, USA:Academic Press, 2001:355-388.
[8] TONG Zh, WEI H, JIAN Sh Sh. High-power lasers for pumping Raman amplifiers[J].Journal of Optoelectronics·Laser, 2001, 12(5):545-548(in Chinese).
[9] FARALLI S, BOLOGNINI G, ANDRADE M A, et al. Unrepeated WDM transmission systems based on advanced first-order and higher order Raman-copumping technologies[J].Journal of Lightwave Tech-nology, 2007, 25(11):3519-3527. DOI: 10.1109/JLT.2007.906801
[10] LONG Q Y, DENG H Q, CUI D L. Effect of pump power deployment on bi-directional pumping fibre Raman amplifiers[J]. Laser Technology, 2013, 37(2):216-218(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201302019
[11] ZHOU W J, LI Z R, WANG R B. Analysis of gain characteristics of forward and backward pumped Raman amplifiers[J]. Laser Technology, 2009, 33(4):406-408(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs200904030
[12] FARALLI S, BOLOGNINI G, SACCHI G, et al. Bidirectional higher order cascaded Ramanamplification benefits for 10-Gb/s WDM unrepeated transmission systems[J]. Journal of Lightwave Technology, 2005, 23(8):2427-2433. DOI: 10.1109/JLT.2005.850807
[13] PERLIN V E, WINFUL H G. On trade-off between noise and nonlinearity in WDM systems withdistributed Raman amplification[C]//Optical Fiber Communication Conference & Exhibit.New York, USA: IEEE, 2002: 178-180.
[14] ANIA-CASTAN~ÓN J D. Quasi-lossless transmission using second-order Raman amplification and fibre Bragg gratings[J].Optics Express, 2004, 12(19):4372-4377. DOI: 10.1364/OPEX.12.004372
[15] ANIA-CASTAN~ÓN J D, ELLINGHAM T J, IBBOTSON R, et al. Ultralong Raman fiber lasers as virtually lossless optical media[J]. Physical Review Letters, 2006, 96(2):023902. DOI: 10.1103/PhysRevLett.96.023902
[16] JIA X H, RAO Y J, WANG Z N, et al.Detailed theoretical investigation on improved quasi-lossless transmission using third-orderRaman amplification based on ultra-long fiber lasers[J]. Journal of the Optical Society of America, 2012, B29(4):847-854. http://www.opticsinfobase.org/vjbo/abstract.cfm?uri=josab-29-4-847
[17] ZHU J M, ZHANG W L, RAO Y J, et al. Output characteristics of low-threshold random distributed feedback fiber laser[J]. Chinese Journal of Lasers, 2013, 40(3):0302007(in Chinese). DOI: 10.3788/CJL
-
期刊类型引用(3)
1. 张科星. 基于深度学习理论的激光图像融合研究. 激光杂志. 2021(04): 121-125 . 百度学术
2. 杨敏,唐思源,白金牛. 基于光流场模型的医学图像弹性配准. 激光杂志. 2020(07): 104-108 . 百度学术
3. 曾志宏,张凌,余少勇. 基于区域特征的长波红外偏振图像融合. 激光杂志. 2020(12): 65-69 . 百度学术
其他类型引用(0)