高级检索

基于混合抽运喇曼放大的准无损传输系统研究

苏渤力

苏渤力. 基于混合抽运喇曼放大的准无损传输系统研究[J]. 激光技术, 2017, 41(2): 265-269. DOI: 10.7510/jgjs.issn.1001-3806.2017.02.024
引用本文: 苏渤力. 基于混合抽运喇曼放大的准无损传输系统研究[J]. 激光技术, 2017, 41(2): 265-269. DOI: 10.7510/jgjs.issn.1001-3806.2017.02.024
SU Boli. Investigation on quasi-lossless transmission system based on hybrid pumping Raman amplification[J]. LASER TECHNOLOGY, 2017, 41(2): 265-269. DOI: 10.7510/jgjs.issn.1001-3806.2017.02.024
Citation: SU Boli. Investigation on quasi-lossless transmission system based on hybrid pumping Raman amplification[J]. LASER TECHNOLOGY, 2017, 41(2): 265-269. DOI: 10.7510/jgjs.issn.1001-3806.2017.02.024

基于混合抽运喇曼放大的准无损传输系统研究

详细信息
    作者简介:

    苏渤力(1989-), 女, 硕士, 助教, 主要研究领域为光纤通信技术、光放大技术、光电检测技术。E-mail:bolisue@foxmail.com

  • 中图分类号: TN929.11

Investigation on quasi-lossless transmission system based on hybrid pumping Raman amplification

  • 摘要: 为了实现信号光在光纤链路上的准无损传输,采用在光纤两端对称注入1阶和2阶喇曼抽运的高阶喇曼放大方法,对该结构下的光纤准无损传输系统建立了理论仿真模型,并对该系统进行了仿真优化,研究了在不同的1阶和2阶抽运功率组合方案下,系统总功率消耗和信号沿光纤功率平坦度的变化,以及信号光功率和光纤长度对系统性能指标的影响。结果表明,采用过高功率(大于1mW)的入射信号光,会恶化系统整体性能;当光纤的长度过长时(大于60km),系统的平坦度指标恶化明显。采用该方案能实现60km的准无损传输,并且可以通过系统所需能耗和信号平坦度的实际需求,设计出不同的抽运功率组合方案。
    Abstract: In order to realize quasi lossless transmission of signal light on optical fiber link, by using high-order Raman amplification method of injecting the first order and the second order Raman pumping into both ends of fiber symmetrically, the numerical model of fiber optical quasi-lossless transmission system was built and the opmization of the system was carried out. The total power consumption and signal power variation with different pump power combinations of the first order and the second order Raman pump were investigated. The influence of signal power and fiber length on system performance index was studied. The results indicate that, system performance will be worse when signal power is higher than 1mW. And system flatness will be worse obviously when fiber length is longer than 60km. Quasi-lossless transmission can be realized along 60km fiber by utilizing this scheme and different pumping power combination schemes can be designed according to the actual demand of energy consumption and signal flatness.
  • Figure  1.   Schematic of quasi-lossless optical transmission system based on high-order Raman amplification

    Figure  2.   Distribution of pump power and signal power vs. fiber length

    Figure  3.   Magnification of relationship between signal power and fiber length

    Figure  4.   Total pump power and signal power variation as a function of single-end 1365nm pump power

    Figure  5.   Pump power and signal power distribution vs. fiber length with different pump combinations

    a—1455nm pump b—1550nm signal

    Figure  6.   System performance when single-end 1455nm pump power is fixed at 0.0228W

    a—single-end 1365nm pump power vs. signal power b—signal power variation vs. signal power

    Figure  7.   System performance when single-end 1455nm pump power is fixed at 0.0228W and signal power is 1mW

    a—single-end 1365nm pump power vs. fiber length b—signal power variation vs. fiber length

    Table  1   Parameters used in simulation

    wavelength/nm α /(dB·km-1) ε /km-1 g /(W-1·km-1)
    1365 0.38 1×10-4 0.53
    1455 0.27 6×10-5 0.43
    1550 0.2 4.5×10-5
    下载: 导出CSV

    Table  2   System parameters with different pump power combinations

    power(1365nm)/W 0 0.2 0.4 0.6 0.8
    power(1455nm)/W 0.207 0.126 0.0685 0.0349 0.0182
    ratio(1365nm)/% 0 61.3 85.4 94.5 97.8
    下载: 导出CSV
  • [1]

    WINZER P J, ESSIAMBRE R J. Advanced modulation formats for high-capacity optical transport networks[J]. Journal of Lightwave Technology, 2006, 24(12):4711-4728. DOI: 10.1109/JLT.2006.885260

    [2]

    HEADLEY C, AGRAWAL G P. Raman amplification in fiber optical communication systems[M].San Diego, USA:Academic Press, 2005:13-366.

    [3]

    ZHOU W J, WANG R B, LI Z R. Experiment study of distributed fiber Raman amplifiers[J]. Laser Technology, 2010, 34(3):373-376(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201003015

    [4]

    ZHANG Z X, WANG J F, LI Ch X, et al. Experimental research of S-band distributed fiber Raman amplifier[J].Journal of Optoelectronics·Laser, 2004, 15(5):557-560(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDZJ200405013.htm

    [5]

    XUE F, QIU K. A design method of broadband fiber Raman amplifiers[J].Journal of Optoelectronics·Laser, 2003, 14(4):372-375(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDZJ200304011.htm

    [6]

    ZHOU W J, LI Z R, WANG R B. Numerical simulation and analysis of C+L bandwidth fiber Raman amplifier using multi-wavelength pumps[J]. Laser Technology, 2011, 35(6):778-780(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201106015

    [7]

    AGRAWAL G P. Nonlinear fiber optics[M]. San Diego, USA:Academic Press, 2001:355-388.

    [8]

    TONG Zh, WEI H, JIAN Sh Sh. High-power lasers for pumping Raman amplifiers[J].Journal of Optoelectronics·Laser, 2001, 12(5):545-548(in Chinese).

    [9]

    FARALLI S, BOLOGNINI G, ANDRADE M A, et al. Unrepeated WDM transmission systems based on advanced first-order and higher order Raman-copumping technologies[J].Journal of Lightwave Tech-nology, 2007, 25(11):3519-3527. DOI: 10.1109/JLT.2007.906801

    [10]

    LONG Q Y, DENG H Q, CUI D L. Effect of pump power deployment on bi-directional pumping fibre Raman amplifiers[J]. Laser Technology, 2013, 37(2):216-218(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201302019

    [11]

    ZHOU W J, LI Z R, WANG R B. Analysis of gain characteristics of forward and backward pumped Raman amplifiers[J]. Laser Technology, 2009, 33(4):406-408(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs200904030

    [12]

    FARALLI S, BOLOGNINI G, SACCHI G, et al. Bidirectional higher order cascaded Ramanamplification benefits for 10-Gb/s WDM unrepeated transmission systems[J]. Journal of Lightwave Technology, 2005, 23(8):2427-2433. DOI: 10.1109/JLT.2005.850807

    [13]

    PERLIN V E, WINFUL H G. On trade-off between noise and nonlinearity in WDM systems withdistributed Raman amplification[C]//Optical Fiber Communication Conference & Exhibit.New York, USA: IEEE, 2002: 178-180.

    [14]

    ANIA-CASTAN~ÓN J D. Quasi-lossless transmission using second-order Raman amplification and fibre Bragg gratings[J].Optics Express, 2004, 12(19):4372-4377. DOI: 10.1364/OPEX.12.004372

    [15]

    ANIA-CASTAN~ÓN J D, ELLINGHAM T J, IBBOTSON R, et al. Ultralong Raman fiber lasers as virtually lossless optical media[J]. Physical Review Letters, 2006, 96(2):023902. DOI: 10.1103/PhysRevLett.96.023902

    [16]

    JIA X H, RAO Y J, WANG Z N, et al.Detailed theoretical investigation on improved quasi-lossless transmission using third-orderRaman amplification based on ultra-long fiber lasers[J]. Journal of the Optical Society of America, 2012, B29(4):847-854. http://www.opticsinfobase.org/vjbo/abstract.cfm?uri=josab-29-4-847

    [17]

    ZHU J M, ZHANG W L, RAO Y J, et al. Output characteristics of low-threshold random distributed feedback fiber laser[J]. Chinese Journal of Lasers, 2013, 40(3):0302007(in Chinese). DOI: 10.3788/CJL

  • 期刊类型引用(3)

    1. 张科星. 基于深度学习理论的激光图像融合研究. 激光杂志. 2021(04): 121-125 . 百度学术
    2. 杨敏,唐思源,白金牛. 基于光流场模型的医学图像弹性配准. 激光杂志. 2020(07): 104-108 . 百度学术
    3. 曾志宏,张凌,余少勇. 基于区域特征的长波红外偏振图像融合. 激光杂志. 2020(12): 65-69 . 百度学术

    其他类型引用(0)

图(7)  /  表(2)
计量
  • 文章访问数:  4
  • HTML全文浏览量:  0
  • PDF下载量:  4
  • 被引次数: 3
出版历程
  • 收稿日期:  2016-03-08
  • 修回日期:  2016-04-06
  • 发布日期:  2017-03-24

目录

    /

    返回文章
    返回