-
激光耦合即激光束在微水束中发生多次全反射后形成高能量束并在微水束中传输的过程。耦合期间激光束要依次经过空气层、玻璃层L1、水层L2并进入到水束光纤的开始端[13-14],如图 1所示。
激光光束在水束中发生全反射的条件是入射角θ1不大于最大入射角αmax。由于在耦合过程中,玻璃厚度很薄,假设光线在经由玻璃层时是直线传输,则发生临界全反射时,有:
$ {\rm{sin}}C = 1/{n_2} $
(1) 由图 1可得:
$ \frac{{{\rm{sin}}{\theta _1}}}{{{\rm{sin}}{\theta _2}}} = \frac{{{n_2}}}{{{n_1}}} $
(2) $ {\theta _3} = {\rm{ \mathsf{ π} }}/2-{\theta _2} $
(3) $ {\theta _3} \ge C $
(4) $ {\rm{tan}}{\theta _1} = r/{H_0} $
(5) 由(1)式~(4)式,得到:
$ {\theta _1} \le {\rm{arcsinn}}\frac{{\sqrt {{n_2}^2-1} }}{{{n_1}}} $
(6) 式中, n1为激光在空气中的折射率,n2为激光在水中的折射率,C为临界入射角,r为激光束聚焦前的光斑半径,H0为凸透镜焦距。当n1=1,n2=1.33时,由(6)式得到:θ1, max=61.3°。本文中选用r=10mm,H0=50mm,则实际入射角θ1=11.5° < θ1, max,满足激光束全反射的条件。
第2个重要耦合条件是微水束的稳定性。受水束内外紊乱、水束表面张力、水束速度分布以及周围空气的影响,水束的表面高度呈周期性波动[15],一旦表面波动的振幅超过极限值,被导引的激光将从水束中发散出来。本文中采用FLUENT软件对注水口数量、耦合腔顶部薄水层压力、耦合器内部流体压力对喷嘴水射流稳定性的影响进行数值分析,保证喷嘴小孔喷射出的微水束射流均匀稳定,破碎长度大。
微水导激光切割玻璃的耦合装置设计
Design of coupling device for laser cutting guided by water beam
-
摘要: 为了解决激光切割钢化玻璃过程中由于热应力导致产生裂纹并发生破裂的技术难题,建立了光液耦合模型,采用FLUENT软件进行了耦合腔内多场分析,获得了微水导激光切割钢化玻璃的工艺参量。结果表明,在喷口口径为0.4mm、水束压力为20MPa、激光功率为48W、切割速率为20mm/s的工艺条件下,厚度为0.5mm及1.0mm的玻璃试样的切割表面均比较光滑、基体内无微裂纹存在,切缝宽度约为100μm。该双注水口耦合装置的设计是合理的,能够满足钢化玻璃切割工艺的要求。Abstract: In order to solve the crack caused by thermal stress during the process of laser cutting for the toughened glass, the FLUENT software was adopted to analysis the water presure and the stability of water beam based on water & laser coupling model, and the optimised parameters were obtained. Then experiment based on the optimised parameters was conducted to verify the anslysis results. The results show that, incision surfaces of both No.1 and No.2 samples are smooth and slot with the width of 100μm under the condition of nozzle diameter 0.4mm, water pressure 20MPa, laser power 48W and cutting speed 20mm/s. Thedesign of coupling device with two water filling nozzles is applicable in the whole process of laser cutting for the toughened glass.
-
-