高级检索

强激光下4H-SiC晶体电子特性的第一性原理研究

邓发明, 高涛

邓发明, 高涛. 强激光下4H-SiC晶体电子特性的第一性原理研究[J]. 激光技术, 2017, 41(2): 240-246. DOI: 10.7510/jgjs.issn.1001-3806.2017.02.019
引用本文: 邓发明, 高涛. 强激光下4H-SiC晶体电子特性的第一性原理研究[J]. 激光技术, 2017, 41(2): 240-246. DOI: 10.7510/jgjs.issn.1001-3806.2017.02.019
DENG Faming, GAO Tao. First principle study of electronic properties of 4H-SiC under high power laser[J]. LASER TECHNOLOGY, 2017, 41(2): 240-246. DOI: 10.7510/jgjs.issn.1001-3806.2017.02.019
Citation: DENG Faming, GAO Tao. First principle study of electronic properties of 4H-SiC under high power laser[J]. LASER TECHNOLOGY, 2017, 41(2): 240-246. DOI: 10.7510/jgjs.issn.1001-3806.2017.02.019

强激光下4H-SiC晶体电子特性的第一性原理研究

基金项目: 

国家科技支撑计划资助项目 2014GB125000

国家科技支撑计划资助项目 2014GB111001

四川省教育厅自然科学基金重点资助项目 16ZA0363

详细信息
    作者简介:

    邓发明(1966-), 男, 副教授, 现主要从事强激光对凝聚态物理性质影响方面的研究。E-mail:dfm@scun.edu.cn

  • 中图分类号: O469

First principle study of electronic properties of 4H-SiC under high power laser

  • 摘要: 为了研究4H-SiC晶体在强激光辐照下电子特性及其变化,采用基于密度泛函微扰理论的第一性原理赝势的方法,对纤锌矿4H-SiC晶体在强激光照射下的电子特性的变化进行了理论分析和实验验证。结果表明,电子温度Te在0eV~2.75eV范围内时,4H-SiC仍然是间接带隙的半导体晶体;当电子温度Te升高达到并超过3.0eV以上时,4H-SiC变为直接带隙的半导体晶体;电子温度Te在0eV~2.0eV变化时,带隙值随电子温度升高而增大;电子温度Te在2.0eV~3.5eV变化时,带隙值随电子温度Te的升高而迅速地减小;当电子温度Te高于3.5eV以后,带隙已经消失而呈现出金属特性。该研究对制作4H-SiC晶体特殊功能电子元件是有帮助的。
    Abstract: In order to investigate the electronic properties of 4H-SiC crystal under high power laser irradiation, the first principles with pseudo potential method based on density functional perturbation theory was applied to theoretically analyze and experimentally verify the electronic properties of wurtzite 4H-SiC crystal under the strong laser irradiation. The results indicate that 4H-SiC remains semiconductor with indirect band-gap in the range of 0eV~2.75eV. When the electronic temperature reaches above 3.0eV, the crystal turns to be semiconductor with direct band-gap. The forbidden bandwidth increases with the rising of Te in the range of 0eV and 2.0eV, and the forbidden bandwidth quickly reduces with the rising of Te in the range of 2.0eV~3.5eV. When Te is over 3.5eV, the gap has disappeared and metallic properties are presented. The study will be helpful for making special function electronic components of 4H-SiC crystal.
  • Figure  1.   Relationship between equilibrium lattice parameter a and c of crystal 4H—SiC and electron temperatures Te

    Figure  2.   Energy bands of 4H—SiC at two different electron temperatures: Te=1.5eV (dashed lines) and Te=0eV(solid lines)

    Figure  3.   Energy bands of 4H—SiC at two different electron temperatures:Te=3eV(dashed lines) and Te=2eV(solid lines)

    Figure  4.   The bottom of conduction band and the top of value band of 4H—SiC with the change of Te

    Figure  5.   Band gap of 4H—SiC with the change of Te

    Figure  6.   Electron densities of states of 4H—SiC crystal at electronic temperatures Te=0eV and Te=6.0eV

    Figure  7.   Partial and total densities of states of 4H—SiC at Te=0eV

    Figure  8.   Partial and total densities of states of 4H—SiC at Te=6.0eV

  • [1]

    van VECHTEN J A, TSU R, SARIS F W. Nonthermal pulsed laser annealing of Si plasma annealing[J]. Physics Letters, 1979, A74(6):422-426. http://www.sciencedirect.com/science/article/pii/0375960179902421

    [2]

    SHANK C V, YEN R, HIRLIMANN C. Time-resolved reflectivity measurements of femtosecond optical pulse induced phase transitions in silicon[J]. Physical Review Letters, 1983, 50(2):454-457. http://prola.aps.org/abstract/PRL/v50/i6/p454_1

    [3]

    SAETA P, WANG J, SIEGAL Y, et al. Ultrafast electronic disordering during femtosecond laser melting of GaAs[J]. Physical Review Letters, 1991, 67(8):1023-1026. DOI: 10.1103/PhysRevLett.67.1023

    [4]

    LARSSON J, HEIMANN P A, LINDENBERG A M, et al. Ultrafast structural changes measured by time-resolved X-ray diffraction[J]. Applied Physics, 1998, A66(6):587-591. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=937ef85e76e42df70fc3a09fc49d2cb5

    [5]

    UTEZA O P, GAMALY E G, RODE A V, et al. Gallium transformation under femtosecond laser excitation:phase coexistence and incomplete melting[J]. Physical Review, 2004, B70(5):054108. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0212571355/

    [6]

    SILVESTRELLI P L, ALAVI A, PARRINELLO M, et al. Structural, dynamical, electronic, and bonding properties of laser-heated silicon:an ab initio molecular-dynamics study[J]. Physical Review, 1997, B56(8):3806-3812. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRBMDO000056000007003806000001&idtype=cvips&gifs=Yes

    [7]

    SILVESTRELLI P L, ALAVI A, PARRINELLO M, et al. Ab initio molecular dynamics simulation of laser melting of silicon[J]. Physical Review Letters, 1996, 77(15):3149-3152. DOI: 10.1103/PhysRevLett.77.3149

    [8]

    WANG M M, GAO T, YU Y, et al. Effect of intense laser irradiation on the lattice stability of InSb[J]. The European Physical Journal Applied Physics, 2012, 57(1):10104. DOI: 10.1051/epjap/2011110381

    [9]

    DENG F M, GAO T, SHEN Y H, et al. Effect of intense laser irradiation on the structural stability of 3C-SiC[J]. Acta Physica Sinica, 2015, 64(4):046301(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/wlxb201504036

    [10]

    RECOULES V, CLÉROUIN J, ZÉRAH G, et al. Effect of intense laser irradiation on the lattice stability of semiconductors and metals[J]. Physical Review Letters, 2006, 96(5):055503. DOI: 10.1103/PhysRevLett.96.055503

    [11]

    ZIJLSTRA E S, WALKENHORST J, GILFERT C, et al. Ab initio description of the first stages of laser-induced ultra-fast nonthermal melting of InSb[J]. Applied Physics, 2008, B93(4):743-747. DOI: 10.1007/s00340-008-3294-x

    [12]

    SHEN Y H, GAO T, WANG M M. Effect of intense laser irradiation on the lattice stability of Cu and Ag[J]. Computational Materials Science, 2013, 77(3):372-376. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3a9205945cb94f0837464482ae82caa6

    [13]

    SHEN Y H, GAO T, WANG M M. Effect of intense laser irradiation on the lattice stability of Al2Au[J]. Communication in Theoretical Physics, 2013, 59(5):589-593. DOI: 10.1088/0253-6102/59/5/13

    [14]

    MATSUNAMI H. Current SiC technology for power electronic devices beyond Si[J].Microelectronic Engineering, 2006, 83(1):2-4. DOI: 10.1016/j.mee.2005.10.012

    [15]

    WEITSEL C E. Silicon carbicle high frequency devices[J]. Materials Science Forum, 1998, 264/268:907-912. DOI: 10.4028/www.scientific.net/MSF.264-268

    [16]

    COSTA A K, CAMARGO J R S S. Amorphous SiC coatings for WC cutting tools[J]. Surface and Coatings Technology, 2003, 163/164(2):176-180. http://www.sciencedirect.com/science/article/pii/S0257897202004863

    [17]

    ROTTNER K, FRISCHHOLZ M, MYRTVEIT T, et al. SiC power devices for high voltage applications[J]. Materials Science & Engineering, 1999, 61/62(98):330-338. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_1595ec751cfdb9c97b7d39264314d8ef

    [18]

    ZHANG H P, QI R S, WANG D J, et al. Device structure and simulations of 4H-SiC TPJBS diode[J].Power Electronics, 2011, 45(9):35-38(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dldzjs201109013

    [19]

    GAO D M, LU Q R, WEI Y B, et al. Minority carrier lifetime measurement for N-type 4H-SiC by means of the microwave photoconductivity decay method[J]. Laser Technology, 2011, 35(5):610-612(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201105010

    [20]

    GAO D M, LU Q R, WEI Y B, et al.Study on minority carrier litetime of P type 4H-SiC[J]. China Measurement & Test, 2012, 38(1):19-21(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-SYCS201201008.htm

    [21]

    JIANG Z Y, XU X H, WU H S, et al. Studies on the geometric and electronic structure of SiC polytypes[J]. Acta Physica Sinica, 2002, 51(7):1586-1590(in Chinese). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-WLXB200207030.htm

    [22]

    TROULLIER N, MARTINS J L. A straightforward method for generating soft transferable pseudopotentials[J]. Solid State Communications, 1990, 74(7):613-616. DOI: 10.1016/0038-1098(90)90686-6

    [23]

    GONZE X, BEUKEN J M, CARACAS R, et al. First-principles computation of material properties:the ABINIT software project[J]. Computational Materials Science, 2002, 25(3):478-492. DOI: 10.1016/S0927-0256(02)00325-7

    [24]

    CAMP P E, DOREN V, DEVREESE J T. First principles calculation of the pressure coefficient of the indirect band gap and of the charge density of C and Si[J]. Physical Review, 1986, B34(9):1314-1316. http://europepmc.org/abstract/MED/9939756

    [25]

    FENG S Q, ZHAO J L, CHENG X L.A first principles study of the lattice stability of diamond-structure semiconductors under intense laser irradiation[J]. Applied Physics, 2013, J113(2):023301. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0d24df2e8d014aa3f8e58edd91ad7981

    [26]

    THOMPSON M O, GALVIN G J, MAYER J W, et al. Melting temperature and explosive crystallization of amorphous silicon during pulsed laser irradiation[J]. Physical Review Letters, 1984, 52(26):2360-2363. DOI: 10.1103/PhysRevLett.52.2360

    [27]

    POATE J M, BROWN W L. Laser annealing of silicon[J]. Physics Today, 1982, 35(6):24-30. DOI: 10.1063/1.2915125

    [28]

    LIU Z L. Advantage and development foreground of SiC power semiconductor devices[J]. Power Electronics, 2009(6):10-13(in Chin-ese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLDI200906006.htm

    [29]

    GROMOV G G, KAPAEV V V, KOPAEV Y V. Semiconductor-metal phase transition induced in InSb by a strong electromagnetic field[J]. Zhurnal Eksperimental'noii Teoreticheskoi Fiziki, 1988, 94(12):101-113. http://cn.bing.com/academic/profile?id=940d5751296dcc3e274fd683980f973a&encoded=0&v=paper_preview&mkt=zh-cn

    [30]

    SOKOLOWSKI-TINTEN K, BIALKOWSKI J, VON DER LINDE D. Ultrafast laser-induced order-disorder transitions in semiconductors[J]. Physical Review, 1995, B51(20):14186. http://europepmc.org/abstract/med/9978346

    [31]

    DENG F M, GAO T. Effect of intense laser irradiation on the electronic properties of 3C-SiC[J]. Chemical Research and Application, 2016, 28(5):681-687(in Chinese). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-HXYJ201605019.htm

    [32]

    DENG F M. Effect of intense laser irradiation on the electronic properties of 2H-SiC[J]. Acta Physica Sinica, 2015, 64(22):227101(in Chinese). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-HXYJ201605019.htm

    [33]

    DENG F M. Effect of intense laser irradiation on the electronic properties of 6H-SiC[J]. Acta Physica Sinica, 2016, 65(10):107101(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/wlxb201610035

图(8)
计量
  • 文章访问数:  8
  • HTML全文浏览量:  1
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-11
  • 修回日期:  2016-09-12
  • 发布日期:  2017-03-24

目录

    /

    返回文章
    返回