-
目前用来探测光斑位置的光电探测器有3种[14]:电荷耦合器件(charge coupled device, CCD)、四象限探测器(quadrant detector, QD)和2维PSD。QD线性度一般,而且存在死区,对光斑能量分布要求高。CCD线性度好,对光斑的要求也比较低,但是响应时间却在毫秒量级,对于需要快速反应的场合应用存在一定的限制。PSD可探测光斑能量中心的位置,因此对于光斑的形状和能量分布均没有太高的要求;PSD的光敏面无分割,能够进行连续测量,中心区域线性度好;与CCD相比,其响应速度快,响应时间是在微秒量级。图 1为2维PSD探测原理图,2维PSD有4个电流输出管脚。光束入射到PSD的光敏面时,PSD产生与入射光功率成比例的光生电荷,并形成电流流向PSD的管脚。
光斑能量中心在PSD上的位置X和Y表示为:
$ \left\{ \begin{array}{l} \frac{{2X}}{{{L_X}}}\frac{{\left( {A + C} \right)-\left( {B + D} \right)}}{{A + B + C + D}}\\ \frac{{2Y}}{{{L_Y}}} = \frac{{\left( {A + B} \right)-\left( {C + D} \right)}}{{A + B + C + D}} \end{array} \right. $
(1) 式中,A, B, C和D是PSD 4个管脚的输出电流,LX和LY是光敏面的长度。为了使用方便,一般采用可见光作为目标光源,2维PSD的光谱响应范围最好覆盖可见光波段。除此之外,光敏面积以及测量分辨率,分别对应于测量的量程与分辨率,是2维PSD选择的重要原则。当目标激光器与2维PSD相距较远时,激光器输出的光斑需要进行扩束,减小发散角,因此光敏面积势必要大于光斑大小。本文中设计的位移检测系统,期望能达到毫米量级量程以及微米量级的测量分辨率,因此选用日本滨松公司的S1880型2维位置敏感探测器。其具有12mm×12mm光敏面积,光斑位置分辨率达到1.5μm,光谱响应范围在320nm~1060nm之间,是一款合适的位置灵敏探测器。
基于相敏检波和位置探测器的位移检测系统
Displacement measurement system based on phase-sensitive detection and position sensitive detector
-
摘要: 为了实现对微小位移的测量,研制了一套基于单模光纤输出半导体激光器和2维位置敏感探测器的位移检测系统,可以有效地抑制环境光噪声。对半导体激光器的注入电流进行1kHz的调制,实现输出光功率的调制。在信号处理电路中,采用相敏检波技术,解调探测器的输出交流信号,得出光斑能量中心位置,消除外界干扰。结果表明,测量精度优于1μm。这一结果对于多自由度误差检测是有帮助的。Abstract: In order to realize the measurement of micro displacement, a displacement detection system based on semiconductor laser with single mode optical fiber output and 2-D position sensitive detector(PSD) was developed to suppress ambient light noise effectively. The output power of laser was sinusoidally changed when injection current was modulated with 1kHz. The desired signals from PSD which is illuminated by the modulated light source are demodulated from the noise with phase-sensitive detection technique. In the signal processing circuit, using phase sensitive detection technology, the output alternating current signal of detector was demodulated and spot energy center position was gotten. Therefore, the disturbance of background light was eliminated. The results show that the measuring accuracy is better than 1μm. The study is helpful for multi-degree-of-freedom errors measurement.
-
[1] DUAN J, SUN X, CAI J H, et al. Applications research to PSD in the laser displacement detecting system[J]. Infrared and Laser Engineering, 2007, 36(s1):281-284(in Chinese). [2] LIU J Y, YANG J Q, DONG D F. Application and research of laser tracker's optoelectronic aiming technology based on PSD[J]. Instrument Technique and Sensor, 2015(7):98-100(in Chinese). [3] YU L, WANG F M. One dimension PSD and applications to precision measurement[J]. Modern Electronics Technique, 2007, 30(7):143-144(in Chinese). [4] YANG S L, SU Y B, HE J T, et al. Study of measurement accuracy of position sensitive detectors[J]. Laser Technology, 2014, 38(6):830-834(in Chinese). [5] SONG D Y, LIU T G, DING X K, et al. Precise PSD micro-displacement online measurement system[J]. Journal of Tianjin University, 2013, 46(2):168-173(in Chinese). [6] CHEN J H, ZHANG J M, LÜ Y P. Design of position detector for alignment laser line based on the PSD[J]. Measurement & Control Technology, 2012, 31(10):8-11(in Chinese). [7] LIU C Q, SONG Q, SUN Z W, et al. A new PSD-based method for measuring four-degree-of-freedom of long linear guide rails[J]. Optical Instruments, 2013, 35(6):26-30(in Chinese). [8] YUAN H X, LÜ A M, HE A Zh. Position error analysis of PSD irradiated under steady background light[J]. Journal of Transducer Technology, 1998, 17(5):33-36(in Chinese). [9] LÜ A M, YUAN H X, HE A Zh. Experimental study of the effect of light source on position precision of PSD[J]. Laser Technology, 2000, 24(3):192-194(in Chinese). [10] FAN Z G, ZHANG F S, ZUO B J, et al. Effect of noise ray on properties of position sensitive detector[J]. Laser Technology, 2004, 28(4):442-444(in Chinese). [11] WANG G Zh, DING H S, DING H. Light disturbance to position sensitive detectors-pattern and methods to overcome it[J]. Journal of Tsinghua University(Science and Technology Edition), 1997, 37(1):61-64(in Chinese). [12] LI L, MU X Y. A novel method to eliminate the disturbance of background light for PSD[J]. Transducer and Microsystem Techno-logies, 2006, 25(9):15-19(in Chinese). [13] MO Ch T, CHEN C Z, ZHANG L L, et al. Study on background light compensation of photo-electric position sensitive detector[J]. Chinese Journal of Lasers, 2004, 31(4):427-431(in Chinese). [14] LI J L, LAN X Y, CHEN H Y, et al. Design of current supply for high power laser diode[J]. Laser & Infrared, 2014, 44(3):309-312(in Chinese). [15] LIBBRECHT K G, HALL J L. A low-noise high-speed diode laser current controller[J]. Review of Scientific Instruments, 1993, 64(8):2133-2135. doi: 10.1063/1.1143949 [16] ERICKSON C J, ZIJLL M V, DOERMANN G, et al. An ultrahigh stability, low-noise laser current driver with digital control[J]. Review of Scientific Instruments, 2008, 79(7):073107. doi: 10.1063/1.2953597