-
建立一块各向同性且均匀的铝制薄板,铝板的长度为100mm,宽度为30mm,厚度为2mm,裂纹左边界距离板左端75.93mm。现有一束脉冲线源激光沿厚度方向照射到试样表面上,该问题可以简化成平面应变问题来分析, 如图 1所示。
为了精确模拟激光激发超声波的物理过程和超声波在表面的传播过程,网格的尺寸应不超过波长的1/4[9]。又考虑到计算效率,将网格尺寸取为0.040mm×0.013mm。在模型的左边界添加全约束。有限单元取平面应变单元CPE4R。用有限元来模拟超声波,模型必须要有足够大的几何尺寸才能避免来自边界的反射波对计算的影响,但这样会消耗大量的计算资源和计算时间。为了提高计算效率,同时也为了消除边界回波对表面波信号的干扰,在模型的左边界、右边界以及下边界使用无限单元,无限单元为CINPE4。超声波若在物体中能够完整的传播,需要有足够的时间,因此总时间长度取为5×10-5s,同时保证激光加载的精度,取时间步长为1×10-9s。
-
为了使激光冲击作用的简化更接近于实际情况,体现激光在激发过程中的作用,需要将激光冲击作用与力作用相互联系。本文中考虑了激光的主要参量,即脉冲宽度、波长、能量、功率密度,从峰值功率密度、时间分布、空间分布3个角度将激光作用简化成力的作用。
激光波长λ=1064nm,脉冲宽度τ=10ns,激光作用面宽度d=0.6mm,单次脉冲能量E0=13.5mJ,峰值功率密度${I_0} = \frac{{{E_0}}}{{\tau A}} = 7.5 \times {10^6}{\text{W/c}}{{\text{m}}^{\text{2}}} $。其中,A为面积,线源脉冲激光在作用面上产生的峰值压力为[10]:
$ {p_{\max }} = k{\tau ^{ - \frac{1}{8}}}{\lambda ^{ - \frac{1}{4}}}{I_0}^{\frac{3}{4}} = 2.43{\text{MPa}} $
(1) 式中,k为与材料有关的量,取k=2.3×10-7。
激光脉冲的空间分布函数[11]为:
$ \mathit{f}\left( r \right) = \exp \left( { - \frac{{{r^2}}}{{{r_0}^2}}} \right) $
(2) 式中, r0是激光辐照的半径, r为距激光作用面中心线的距离。
激光脉冲的时间分布函数[12]为:
$ g\left( t \right) = \alpha \frac{{8{t^3}}}{{{\tau ^4}}}\exp \left( { - \frac{{ - 2{t^2}}}{{{\tau ^2}}}} \right) $
(3) 式中,α为可由峰值压力确定的修正系数,取α=21,且载荷作用时间t取为脉冲宽度的3倍[13], 即载荷作用时间为30ns。
激光超声检测表面裂纹深度的数值模拟
Numerical simulation of laser ultrasonic detection of surface micro-crack depth
-
摘要: 为了研究激光冲击所引起的瑞利表面波在材料表面裂纹检测方面的作用,采用ABAQUS建立了激光超声无损检测表面裂纹的模型,并模拟激光在材料表面激发瑞利波及瑞利波沿材料表面传播的过程。从激光的峰值压力、空间分布、时间分布3个方面将激光冲击作用等效成力的作用,体现了激光参量在作用过程中所起到的作用;同时,使用无限单元消除了边界的反射回波。通过对接收点处瑞利表面波信号的分析,进行了不同深度表面裂纹对瑞利波回波峰值影响的定量比较。结果表明,瑞利反射波的正向峰值与下一次最大正向位移所对应的时间的比值和表面裂纹深度之间存在着线性关系,进而为实验测量表面裂纹深度提供了一种测量方法。Abstract: To research the effect of Rayleigh surface wave induced by laser shock on the surface crack detection of materials, an equivalent model of laser ultrasonic nondestructive testing was established by using ABAQUS. The process of Rayleigh wave aroused by laser shocking and the propagating process of Rayleigh wave on the surface were simulated. Considering laser parameters, laser shock was equivalent to force impact according to peak pressure, spatial distribution and time distribution. Infinite elements were used to eliminate echo waves. By analyzing the Rayleigh surface wave signal on the receiver point, the effect of surface crack depth on Rayleigh wave echo peak was compared quantitatively. The result shows that, linear relationship exists between the rate of the positive peak value of Rayleigh wave and the time of the next maximum forward displacement and surface crack depth. The results provide a method for experimental measuring on the surface crack.
-
[1] YU Q, HE C X. Application of nondestructive testing in composite materials[J]. Engineering and Test, 2009, 49(2):24-29(in Chin-ese). [2] HOU R F, WANG W H, MO R Y, et al. Laser ultrasound detection of surface crack in porcelain insulators[J]. Laser Technology, 2014, 38(1):35-38(in Chinese). [3] MA J, ZHAO Y, ZHOU F Y, et al. Effect of defocusing amount on thickness measurement based on laser ultrasound[J]. Laser Techno-logy, 2015, 39(3):349-352(in Chinese). [4] LIU J S, XU Z H, GU G Q. Numerical study on improvement of signal-to-noise ratio of surface acoustic waves based on laser array[J]. Laser Technology, 2011, 35(3):403-406(in Chinese). [5] XU B Q, LIU H K, XU G D, et al. Mixed stress-displacement finite element method for laser-generated ultrasound[J]. Laser Technology, 2014, 38(2):230-235(in Chinese). [6] HUANG Y, JIANG Y F, JIN H, et al. Propagation of shock wave induced by ring laser and its effect on spalling[J]. Laser Technology, 2013, 37(3):301-305(in Chinese). [7] ZHANG Z D, LU C, WEI Y F, et al. Numerical simulation to size surface-breaking tilt cracks by ultrasonic spectral method[J]. Journal of Nanchang Hangkong University(Natural Science Edition), 2009, 23(1):87-92(in Chinese). [8] WANG G X, YAN G, GUAN J F. Effect of thickness of metal hollow cylinders on laser thermo-elastic generated Rayleigh wave[J]. Laser Technology, 2014, 38(1):58-64(in Chinese). [9] SHEN Z H, XU B Q, NI X W, et al. Numerical simulation of pulsed laser induced ultrasound in monolayer and double layer materials[J].Chinese Journal of Lasers, 2004, 31(10):1275-1280(in Chin-ese). [10] ZHU W H, LI Z Y, ZHOU G Q, et al. Measurement of laser-induced shock waves by PVDF[J]. Journal of Experimental Mecha-nics, 1997, 12(2):216-220(in Chinese). [11] XU B Q, NI X W, SHEN Z H, et al. Numerical simulation of laser-generated ultrasonic by finite element method in the plate material[J]. Chinese Journal of Lasers, 2004, 31(5):621-625(in Chin-ese). [12] GUAN J F, SHEN Z H, NI X W, et al. Numerical study on depth evaluation of micro-surface crack by laser generated ultrasonic waves[J]. Journal of Test and Measurement Technology, 2010, 24(1):15-21(in Chinese). [13] DEVAUX D, FABBRO R, TOLLIER L, et al. Generation of shock waves by laser induced plasma in confined geometry[J]. Journal of Applied Physics, 1993, 74(4):2268-2273. doi: 10.1063/1.354710 [14] WALED H, WILLIAM V. Finite elements analysis of Rayleigh wave interaction with finite-size, surface-breaking cracks[J]. Ultraso-nics, 2003, 41(1):41-52. [15] GUAN J F, SHEN Z H, XU B Q, et al. Numerical simulation of scattering of Rayleigh wave by a surface——breaking crack[J]. Applied Acoustics, 2006, 25(3):138-144(in Chinese).