-
本文中, Ne原子与激光场相互作用可以通过数值求解含时薛定谔方程来描述[23-27], 若无特殊说明, 均采用原子单位。
$ {\rm{i}}\frac{{\partial \phi \left( {r,t} \right)}}{{\partial t}} = \left[ { - \frac{1}{2}{\nabla ^2} + V\left( r \right) + rE\left( t \right)} \right]\phi \left( {r,t} \right) $
(1) 式中,V(r)=-1.2592/r是Ne原子的软核库伦势, E(t)为激光场振幅, r为电子坐标,t为激光作用时间,▽为拉普拉斯算子,ϕ(r, t)为电子波函数,可以表示为:
$ \phi \left( {r,t} \right) = \sum\limits_{l = 0}^{48} {\frac{1}{r}{\mathit{\chi }_\mathit{l}}\left( {r,t} \right){Y_{l,0}}\left( \theta \right)} $
(2) 式中,χl(r, t)和Yl, 0(θ)分别为径向波函数和球谐函数, l为角量子数,θ为角度,下标0表示磁量子数为0。
组合场可以表示为:
$ \begin{array}{l} E\left( t \right) = {E_1}\exp \left[ { - 4\ln \left( 2 \right){t^2}/{\tau _1}^2} \right]\cos \left( {{\omega _1}t + {\varphi _1}} \right) + \\ {E_2}\exp \left[ { - 4\ln \left( 2 \right){{\left( {t - {\tau _{12}}} \right)}^2}/{\tau _2}^2} \right]\cos \left[ {{\omega _2}\left( {t - {\tau _{12}}} \right)} \right. + \\ \;\;\;\;\;\;\;\;\;\left. {{\varphi _2}} \right] + {E_3}\exp \left[ { - 4\ln \left( 2 \right){{\left( {t - {\tau _{13}}} \right)}^2}/{\tau _3}^2} \right] \times \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\cos \left[ {{\omega _3}\left( {t - {\tau _{13}}} \right) + {\varphi _3}} \right] \end{array} $
(3) 式中, Ei, ωi, τi和φi (i=1~3)分别为3束激光场的振幅、谐波截止频率、脉宽和载流子包络相位(carrier envelope phase, CEP); τ12和τ13分别是第1束和第2束激光场以及第1束和第3束激光场的延迟时间。由于E=hω,因此在本文中,通过分析谐波阶次ω/ω1来讨论截止能量。
根据艾伦费斯特定律[28], 可以求得偶极加速度为:
$ a\left( t \right) = - \left\langle {\phi \left( {r,t} \right)\left| {\frac{{\partial V\left( r \right)}}{{\partial r}} + E\left( t \right)} \right|\phi \left( {r,t} \right)} \right\rangle $
(4) 然后对其进行傅里叶变换便可以得到相应的高次谐波谱:
$ S\left( \omega \right) = {\left| {\frac{1}{{\sqrt {2{\rm{ \mathsf{ π} }}} }}\int \begin{array}{l} T\\ 0 \end{array} a\left( t \right)\exp \left( { - {\rm{i}}\omega t} \right){\rm{d}}t} \right|^2} $
(5) 式中,T为总作用时间。最后, 通过适当地叠加谐波可以获得阿秒脉冲, q为谐波阶次:
$ I\left( t \right) = {\left| {\sum\limits_q {\left[ {\int {a\left( t \right)\exp \left( { - {\rm{i}}\mathit{q}\omega t} \right){\rm{d}}t} } \right]} \exp \left( {{\rm{i}}\mathit{q}\omega t} \right)} \right|^2} $
(6) -
图 1a中给出单色20fs/800nm激光场相位角φ1对谐波截止能量的影响,激光强度I1=5.0×1014W/cm2。本文中,每隔0.05π计算一次谐波光谱,即给出的谐波截止能量与相位角的对应关系可精确到0.05π。从图中可知, 谐波截止能量几乎都在75阶左右,与经典预言值Ip+3.17Up符合得很好,但其对多周期激光场相位角的响应不是很明显。图 1b中给出了加入一束5fs/800nm,I2=5.0×1014W/cm2,τ12=0.0π,φ2=0.0π激光场到20fs/800nm后,相位角φ1对谐波截止能量的影响。从图中可知,随着少周期激光场的加入,谐波截止能量与激光相位角φ1的对应关系变得相对明显。为了方便说明,部分相位角与谐波最大截止能量的对应关系在表 1中给出。从表 1中可知,激光相位角对谐波最大截止能量有很大的影响,并且每个激光相位只对应一个谐波截止能量。因此,通过这种谐波截止能量与激光相位角的对应关系可以有效地测量多周期中红外激光场的相位。但是当φ1>0.8π时,谐波最大截止能量与相位角对应关系的分辨率逐渐下降。因此,当φ1>0.8π,利用本方案测量中红外激光场相位的分辨率会逐渐下降。为了更直观地说明激光相位对谐波截止能量的影响,图 1c中给出了上述单色场在激光相位φ1=0.0π和φ1=0.3π时的谐波发射光谱。从图中可知,虽然激光相位角改变会对谐波光谱的结构产生一定的影响,但是谐波截止能量几乎都在75阶谐波处,其对单色激光场相位角的响应很小。因此,通过单色激光场的谐波截止能量不能确定(或者测量)激光场的相位。图 1d中给出了上述组合场在φ1=0.0π,τ12=0.0π,φ2=0.0π和φ1=0.3π,τ12=0.0π,φ2=0.0π时的谐波发射光谱。从图中可知,随着少周期激光场的加入,组合场相位φ1对谐波截止能量的影响相比于单色场时明显加大了。例如,谐波截止能量在φ1=0.0π和φ1=0.3π时分别为257阶和209阶谐波,这显然非常有利于利用谐波截止能量来测量激光场的相位。图 1c和图 1d中,1000×表示放大倍数,是为了更直观地观测结果。
Figure 1. a—relationship between harmonic order ω/ω1 and phase angle φ1 of the single field (20fs/800nm) b—relationship between harmonic order ω/ω1 and phase angle φ1 of the combined field (20fs/800nm+5fs/800nm) c—relationship between signal intensity and harmonic order ω/ω1 of the single field (20fs/800nm) d—relationship between signal intensity and harmonic order ω/ω1 of the combined field (20fs/800nm+5fs/800nm)
Table 1. Relationship between phase angle φ1 and harmonic order ω/ω1 of the combined field (20fs/800nm+5fs/800nm) when τ12=0.0π, φ2=0.0π
φ1/π 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 harmonic order ω/ω1 257 250 238 209 179 141 105 75 59 54 50 为了更好地了解激光相位对谐波截止能量的影响,图 2a中给出了上述单色激光场在φ1= 0.0π和φ1=0.3π时的激光包络图。由“三步模型”可知,电子可以在A点发生电离,并加速远离核子;随后当激光场在B点反向时,电子先减速在反向加速;最后,电子在C点与核子发生回碰并发射高能光子。通过分析激光包络图可知,对于本文中采用的多周期激光场,电子的加速-回碰过程,即B-C过程振幅几乎不随激光相位角的改变而变化, 这就是图 1c中谐波截止能量变化不大的原因。图 2b和图 2c中给出了上述2种情况下经典电离-回碰能的时间演化图[29]。从图中可知,在多周期激光场作用下,电子会产生许多电离-回碰能量峰,谐波最大辐射能量峰发生在-0.1T800~0.6T800处(T800是800nm激光场的光学周期),这与之前分析的A-B-C过程是一致的,并且谐波最大截止能量为75阶左右,与图 1中量子的计算结果一致。图 2d中给出了组合场在φ1=0.0π,τ12=0.0π,φ2=0.0π和φ1=0.3π,τ12=0.0π,φ2=0.0π时的激光包络图。从图中可知,由于少周期激光场的加入,A-B-C过程的振幅强度在φ1= 0.0π时要强于φ1=0.3π的情况,这导致电子有更多的时间在激光场中加速,进而回碰时可以发出更高能量的光子,这也就是组合场的谐波截止能量随激光相位改变而变化较大的原因。图 2e和图 2f中给出了上述2种条件下电子电离-回碰能随时间的演化图。从图中可知,谐波最大辐射能量峰发生在-0.1T800~0.6T800处(对应于A-B-C过程),并且由于少周期激光场的加入,φ1=0.3π时谐波截止能量要比φ1=0.0π时有较大的减小,这与之前的分析是一致的。
Figure 2. a—relationship between E(t) and t of the single field (20fs/800nm) b—kinetic energies on ionization and recombination of the single field (20fs/800nm) from A to B c—kinetic energies on ionization and recombination of the single field (20fs/800nm) from B to C d—relationship between E(t) and t of the combined field (20fs/800nm+5fs/800nm) e—kinetic energies on ionization and recombination of the combined field (20fs/800nm+5fs/800nm) from A to B f—kinetic energies on ionization and recombination of the combined field (20fs/800nm+5fs/800nm) from B to C
为了深入地理解谐波发射的特点,运用小波变换的方法[30]对上述4种条件下的连续辐射谱进行了时频分析并给出了清晰的物理图像,如图 3所示。从图中看到,对于单色多周期激光场(图 3a中φ1=0.0π和图 3b中φ1=0.3π),谐波发射会产生多个能量峰,其最大峰值与之前给出的量子(见图 1)或者经典结果(见图 2)是一致的。并且每个峰对应峰值中心左右都有两个贡献几乎一样的“分支”, 被称为短量子路径(左分支)和长量子路径(右分支)[31],这也是谐波光谱干涉现象明显的原因。对于组合场的情况(图 3c中φ1=0.0π,τ12=0.0π,φ2=0.0π和图 3d中φ1=0.3π,τ12=0.0π,φ2=0.0π),可以发现,在少周期激光场加入后,不仅谐波截止能量被明显延伸了,而且谐波截止能量对激光相位的响应也变得明显了,这非常有利于激光相位角的测量。并且对于φ1=0.0π,τ12=0.0π,φ2=0.0π的情况(见图 3c),最大能量峰中短量子路径的贡献要略大于长量子路径的贡献,这就是图 1d中谐波谱图上干涉减小的原因。
为了进一步确定本文中提出的激光相位测量技术,图 4中分别给出了20fs/2000nm单色场以及20fs/2000nm与5fs/800nm组合场下相位角φ1对谐波截止能量的影响。激光场参量分别为I1=5.0×1013W/cm2和I2=5.0×1014W/cm2,τ12=0.0π,φ2=0.0π。从图中可知,虽然谐波发射特点及截止能量随着激光场参量的变化而改变,但是单色场谐波发射截止能量对于激光相位角的改变依然很难进行测量。如图 4a所示,谐波截止能量几乎都在130阶谐波处。而对于组合场情况,谐波截止能量对于组合场相位角φ1的变化还是很明显,如图 4b所示,具体对应关系在表 2中给出。但是,当相位角较大时(例如φ1>0.6π),谐波最大截止能量与相位角对应关系的分辨率又呈现下降的趋势。
Table 2. Relationship between the maximum harmonic order ω/ω1 and phase angle φ1 of the combined field (20fs/2000nm+5fs/800nm) when τ12=0.0π, φ2=0.0π
φ1/π 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 harmonic order ω/ω1 403 384 330 293 264 287 300 295 316 309 305 图 5中分别给出了改变少周期激光场场强I2、延迟时间τ12和相位角φ2后,组合场下辐射谐波的最大截止能量与多周期中红外激光场相位角的对应关系。由图可知,少周期激光场参量的改变可以对谐波截止能量造成很大影响,但是谐波最大截止能量与中红外激光场相位角依然存在一一对应的关系。但是随着相位角的增大(例如φ1>0.6π),谐波最大截止能量与相位角的对应关系趋于平缓,这不利于相位角的分辨。因此,从上述分析可知,本文中提出的利用谐波截止能量来测量多周期中红外激光场相位的方案是可行的。但是当激光相位角较大时,相位测量的分辨率会逐渐下降。图 5为最大谐波截止能量随相位φ1的演化图。其中图 5a中的参量为20fs/2000nm与5fs/800nm,τ12=0.0π,φ2=0.0π,I2=7.0×1014W/cm2;图 5b中的参量为20fs/2000nm与5fs/800nm,τ12=0.25π,φ2=0.5π,I2=5.0×1014W/cm2。
Figure 5. Relationship between harmonic order ω/ω1 and phase angle φ1 of the combined field (20fs/2000nm+5fs/800nm)
图 6a中给出了Ne原子在3束激光场下发射谐波的特点。激光场选择为20fs/2000nm,激光强度I1=5.0×1013W/cm2,5fs/800nm,激光强度I2=5.0×1014W/cm2以及20fs/800nm~20fs/2000nm,激光强度I3=5.0×1013W/cm2。为了方便说明,谐波强度从下到上依次乘以10-18,10-5,10-12,10-9,10-6,10-3,1。从图中可知,随着3束激光场的的引入,谐波截止能量相比于上述2束激光场有进一步的延伸。尤其当λ3=1200nm时,不仅谐波光谱具有最大的截止能量,而且谐波光谱上的干涉现象非常小,这有利于单个阿秒脉冲的产生。图 6b中给出了上述三色场在λ3=1200nm和λ3=2000nm时的激光包络图。从图中可知,激光振幅区(-0.5T2000~0.5 T2000)主要形成3个电离-加速-回碰过程,即,A-B-C,D-E-F,G-H-I。随着第3束控制激光场波长的增加(比较1200nm与2000nm情况),D-E-F过程的振幅强度明显被减小了,因此电子在加速-回碰过程中辐射的能量也相应减小,这就是图 6a中谐波截止能量随波长λ3增大而减小的原因。图 6c和图 6d中给出了上述2种组合场(λ3=1200nm和λ3=2000nm)下谐波发射的时频分析图。从图中可以看出,在多周期激光场作用下电子会产生许多的电离-回碰能量峰,但是在振幅区间(-0.5T2000~0.5T2000)主要有3个能量峰(A1,A2,A3),其辐射时间与之前说明的A-B-C,D-E-F,G-H-I过程一致。对于λ3=1200nm的情况(见图 6c),能量峰A1的强度要远小于A2和A3的强度,因此可以忽略其作用,这就是图 6a谐波光谱中出现2个平台的原因。并且对于最大能量峰A2,其短量子路径对谐波发射的贡献要大于长量子路径,因此导致了谐波在大于250阶后出现干涉较小的光滑连续区,这对于阿秒脉冲的选择和输出是非常有利的。对于λ3=2000nm的情况(见图 6d),能量峰A3的强度要远大于A1和A2,并且其长短量子路径对谐波发射的作用几乎一样,这是谐波光谱上形成干涉较大的单一平台区的主要原因。
图 7a~图 7c中分别给出了组合场(20fs/2000nm+5fs/800nm+20fs/1200nm)相位对谐波光谱的影响。为了方便说明,谐波强度从下到上依次乘以10-12,10-9,10-6,10-3,1。从图中可知,随着激光相位的增大,谐波截止能量都逐渐减小,这显然不利于高能阿秒脉冲的输出。图 7d中给出了:(1)φ1=0.0π,φ2=0.0π,φ3=0.0π;(2)φ1=0.0π,φ2=0.1π,φ3=0.0π;(3)φ1=0.0π,φ2=0.0π,φ3=0.1π情况下谐波发射的原始强度图。从图中可知,虽然谐波截止能量随相位增加而有微小的减小,但是谐波强度却又明显改变,例如,当激光相位为φ1=0.0π,φ2=0.1π,φ3=0.0π时,谐波强度比无相位时几乎增强了1个数量级,这显然非常有利于增强输出阿秒脉冲的强度。因此,谐波发射的最佳激光相位选择为φ1=0.0π,φ2=0.1π,φ3=0.0π。
Figure 7. Relationship between signal intensity and harmonic order ω/ω1 driven by the three-color field (20fs/2000nm+5fs/800nm+20fs/1200nm)
图 8a和图 8b中给出了激光延迟时间(τ12,τ13)对谐波光谱的影响。组合场相位为φ1=0.0π,φ2=0.1π,φ3=0.0π。为了方便说明,谐波强度从下到上依次乘以10-18,10-15,10-12,10-9,10-6,10-3,1。从图中可知,谐波最大截止能量出现在零延迟附近,即-0.1π < τ12,τ13 < 0.1π。正负增大延迟时间都会使谐波截止能量趋于减小。图 8c中给出了3种最佳延迟时间下的谐波发射原始强度图,即τ12=0.0π和τ13=0.0π;τ12=0.1π和τ13=0.0π;τ12=0.0π和τ13=-0.1π。从图中可知,τ13对增强谐波强度有一定作用,即当τ12=0.0π,τ13=-0.1π时,其谐波强度比无延迟时增强了大约0.5个数量级,并且形成了一个272eV的连续平台区。图 8d中给出了τ12=0.0 π,τ13=-0.1π时谐波发射的时频分析图。从图中可知,谐波发射有3个主要能量峰,其最大峰值与图 8c中量子计算结果一致。并且其短量子路径对最大能量峰的贡献要明显大于长量子路径,这正是谐波谱平台区干涉较小的原因。
Figure 8. Relationship between signal intensity and harmonic order ω/ω1 driven by the three-color field(20fs/2000nm+5fs/800nm+20fs/1200nm)
图 9中给出了叠加最佳3色激光场谐波(见图 8c点线)后的阿秒脉冲的时域包络曲线。例如,分别叠加210阶~320阶、320阶~430阶、430阶~540阶、540阶~650阶谐波后,可以获得4个持续时间分别为32as,29as,30as,34as的单个阿秒X射线光源。
中红外激光相位测量及阿秒脉冲的产生
Mid-infrared field phase measurement and attosecond pulse generation
-
摘要: 为了测量中红外激光相位及获得阿秒脉冲,采用高次谐波截止能量随激光相位改变而变化的方法,进行了中红外激光相位测量及阿秒脉冲输出的研究。引入一束少周期激光场后,组合场相位对谐波发射截止能量的影响要比单独中红外激光场相位对谐波截止能量的影响明显很多。因此,提出了一种利用谐波截止能量与相位角的对应关系测量多周期中红外激光相位的方法。同时理论研究了3束中红外激光场下发射高次谐波及阿秒脉冲的特点。结果表明,适当调节3束激光场的延迟时间和相位角,不仅谐波发射的截止能量得到了延伸,而且单一的量子路径也被选择出来对谐波发射起作用,形成了一个272eV的平台区;通过叠加谐波谱上的谐波,可获得一系列脉宽为34as的X射线光源。该研究对中红外激光相位测量及阿秒脉冲的输出是有帮助的。Abstract: In order to measure the phase of mid-infrared field and to obtain the attosecond pulse, the investigation on mid-infrared field phase measurement and attosecond pulse generation has been presented by using the relationship between phase and harmonic cutoff energy. With the introduction of a few-cycle pulse to mid-infrared field, the effect of phase of the combined field on harmonic cutoff energy became much more distinct in comparison with the single field. One new method of phase measurement was gotten. Further, harmonic extension spectra and attosecond pulse generation of the three-color mid-infrared field were numerically investigated. The results show that by properly adjusting the delay times and phases of three pulses, not only harmonic cutoff energy is extended, but also single quantum path is selected to contribute to the harmonic generation, resulting in supercontinuum with bandwidth of 272eV. Finally, by superposing the properly selected harmonics in supercontinuum region, a series of X-ray pulses with pulsewidth of 34as can be obtained. The investigation is helpful for phase measurement of mid-infrared field and attosecond pulse generation.
-
Figure 1. a—relationship between harmonic order ω/ω1 and phase angle φ1 of the single field (20fs/800nm) b—relationship between harmonic order ω/ω1 and phase angle φ1 of the combined field (20fs/800nm+5fs/800nm) c—relationship between signal intensity and harmonic order ω/ω1 of the single field (20fs/800nm) d—relationship between signal intensity and harmonic order ω/ω1 of the combined field (20fs/800nm+5fs/800nm)
Figure 2. a—relationship between E(t) and t of the single field (20fs/800nm) b—kinetic energies on ionization and recombination of the single field (20fs/800nm) from A to B c—kinetic energies on ionization and recombination of the single field (20fs/800nm) from B to C d—relationship between E(t) and t of the combined field (20fs/800nm+5fs/800nm) e—kinetic energies on ionization and recombination of the combined field (20fs/800nm+5fs/800nm) from A to B f—kinetic energies on ionization and recombination of the combined field (20fs/800nm+5fs/800nm) from B to C
Figure 8. Relationship between signal intensity and harmonic order ω/ω1 driven by the three-color field(20fs/2000nm+5fs/800nm+20fs/1200nm)
a—with different τ12 b—with different τ13 c—with different τ12 and τ13) d—between harmonic order ω/ω1 and t driven by three-color laser field(20fs/2000nm+5fs/800nm+20fs/1200nm)
Table 1. Relationship between phase angle φ1 and harmonic order ω/ω1 of the combined field (20fs/800nm+5fs/800nm) when τ12=0.0π, φ2=0.0π
φ1/π 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 harmonic order ω/ω1 257 250 238 209 179 141 105 75 59 54 50 Table 2. Relationship between the maximum harmonic order ω/ω1 and phase angle φ1 of the combined field (20fs/2000nm+5fs/800nm) when τ12=0.0π, φ2=0.0π
φ1/π 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 harmonic order ω/ω1 403 384 330 293 264 287 300 295 316 309 305 -
[1] DRESCHER M, HENTSCHE M, KIENBERGER R, et al. Time-resolved atomic inner-shell spectroscopy[J].Nature, 2002, 419(6909):803-807. doi: 10.1038/nature01143 [2] UIBERACKER M, UPHUES T, SCHULTZE M, et al. Attosecond real-time observation of electron tunnelling in atoms[J].Nature, 2007, 446(7136):627-632. doi: 10.1038/nature05648 [3] HE F, RUIZ C, BECKER A. Control of electron excitation and localization in the dissociation of H2+ and its isotopes using two sequential ultrashort laser pulses[J].Physical Review Letters, 2007, 99(8):083002. doi: 10.1103/PhysRevLett.99.083002 [4] SANSONE G, KELKENSBERG F, PEREZ-TORRES J F, et al. Electron localization following attosecond molecular photoionization[J]. Nature, 2010, 465(7299):763-U3. doi: 10.1038/nature09084 [5] KLING M F, SIEDSCHLAG C, VERHOEF A J, et al. Control of electron localization in molecular dissociation[J].Science, 2006, 312(5771):246-248. doi: 10.1126/science.1126259 [6] YUAN K J, BANDRAUK A D. Single circularly polarized attosecond pulse generation by intense few cycle elliptically polarized laser pulses and terahertz fields from molecular media[J].Physical Review Letters, 2013, 110(2):023003. doi: 10.1103/PhysRevLett.110.023003 [7] GOULIELMAKIS E, SCHULTZE M, HOFSTETTER M, et al. Single-cycle nonlinear optics[J].Science, 2008, 320(5883):1614-1617. doi: 10.1126/science.1157846 [8] WANG C, LIU H L, TIAN J S, et al. Analysis of intrinsic atomic phase in process of extreme ultraviolet attosecond pulse generation[J].Laser Technology, 2012, 36(3):342-345(in Chinese). [9] WANG C, KANG Y F, TIAN J S, et al. Analysis of phase dependence of the two single-attosecond-pulse generation techniques[J].Laser Technology, 2012, 36(4):516-519(in Chinese). [10] CORKUM P B. Plasma perspective on strong field multiphoton ionization[J].Physical Review Letters, 1993, 71(13):1994-1997. doi: 10.1103/PhysRevLett.71.1994 [11] FENG L Q, CHU T S. High-order harmonics extension and isolated attosecond pulse generation in three-color field:Controlling factors[J].Physical Letters, 2011, A375(41):3641-3648. [12] LU R F, HE H X, GUO Y H, et al. Theoretical study of single attosecond pulse generation with a three-colour laser field[J].Journal of Physics, 2009, B42(22):225601. [13] ZENG Z N, CHENG Y, SONG X H, et al. Generation of an extreme ultraviolet supercontinuum in a two-color laser field[J]. Physical Review Letters, 2007, 98(20):203901. doi: 10.1103/PhysRevLett.98.203901 [14] FENG L Q, CHU T S. Generation of an isolated sub-40-as pulse u-sing two-color laser pulses:Combined chirp effects[J].Physical Review, 2011, A84(5):053853. [15] FENG L Q, CHU T S. Nuclear signatures on the molecular harmonic emission and the attosecond pulse generation[J]. The Journal of Chemical Physics, 2012, 136(5):054102. doi: 10.1063/1.3681165 [16] LI P C, ZHOU X X, WANG G L, et al. Isolated sub-30-as pulse generation of an He+ ion by an intense few-cycle chirped laser and its high-order harmonic pulses[J].Physical Review, 2009, A80(5):053825. [17] CHANG Z H. Chirp of the single attosecond pulse generated by a polarization gating[J].Physical Review, 2005, A71(2):023813. [18] DU H C, HU B T. Broadband supercontinuum generation method combining mid-infrared chirped-pulse modulation and generalized polarization gating[J].Optics Express, 2010, 18(25):25958-25966. doi: 10.1364/OE.18.025958 [19] ZHANG Q B, LU P X, LAN P F, et al. Multi-cycle laser-driven broadband supercontinuum with a modulated polarization gating[J].Optics Express, 2008, 16(13):9795-9803. doi: 10.1364/OE.16.009795 [20] CHOU Y, LI P C, HO T S, et al. Optimal control of high-order harmonics for the generation of an isolated ultrashort attosecond pulse with two-color midinfrared laser fields[J].Physical Review, 2015, A91(6):063408. [21] LI P C, LAUGHLIN C, CHU S I. Generation of isolated sub-20-attosecond pulses from He atoms by two-color midinfrared laser fields[J].Physical Review, 2014, A89(2):023431. [22] FENG L Q, LIU H. Generation of the ultrabroad bandwidth with keV by three-color low intense mid-infrared inhomogeneous pulse[J].Optics & Laser Technology, 2016, 81:7-13. [23] LU R F, ZHANG P Y, HAN K L. Attosecond-resolution quantum dynamics calculations for atoms and molecules in strong laser fields[J].Physical Review, 2008, E77(6):066701. [24] FENG L Q, LIU H. Attosecond extreme ultraviolet generation in cluster by using spatially inhomogeneous field[J].Physics of Plasmas, 2015, 22(1):013107. doi: 10.1063/1.4905861 [25] FENG L Q, DUAN Y B, CHU T S. Harmonic extension and attosecond pulse generation by using the modified three-color chirped pulse[J].Annalen der Physik, 2013, 525(12):915-920. doi: 10.1002/andp.v525.12 [26] MIAO X Y, DU H N. Theoretical study of high-order-harmonic generation from asymmetric diatomic molecules[J].Physical Review, 2013, A87(5):053404. [27] HU J, HAN K L, HE G Z. Correlation quantum dynamics between an electron and D2+ molecule with attosecond resolution[J].Physical Review Letters, 2005, 95(12):123001. doi: 10.1103/PhysRevLett.95.123001 [28] BURNETT K, REED V C, COOPER J, et al. Calculation of the background emitted during high-harmonic generation[J].Physical Review, 1992, A45(5):3347-3349. [29] FENG L Q, CHU T S. High-order harmonic generation spectra and isolated attosecond pulse generation with a two-color time delayed pulse[J].Journal of Electron Spectroscopy and Related Phenomena, 2012, 185(1/2):39-46. [30] ANTOINE P, PIRAUX B, MAQUET A. Time profile of harmonics generated by a single atom in a strong electromagnetic field[J].Physical Review, 1995, A51(3):R1750-R1753. [31] MAIRESSE Y, BOHAN A D, FRASINSKI L J, et al. Attosecond synchronization of high-harmonic soft X-rays[J]. Science, 2003, 302(5650):1540-1543. doi: 10.1126/science.1090277