-
光纤布喇格光栅其工作原理是通过对光栅中心反射波长的测量从而得到目标参量,其中心波长λB与光栅周期Λ、纤芯有效折射率neff满足如下关系:
$ {\lambda _{\rm{B}}} = 2{n_{{\rm{eff}}}}\mathit{\Lambda} $
(1) 可见,布喇格光栅中心波长取决于光栅周期和光纤有效折射率,任何使这两个参量变化的外界因素都会引起波长变化[9]。其中,应变和温度是能够显著改变布喇格光栅中心波长的两个物理量。波长漂移与应变和温度的关系如下:
$ \Delta {\lambda _{\rm{B}}} = (1 - {P_{\rm{e}}})\Delta \varepsilon {\lambda _{\rm{B}}} + (\alpha + \xi )\Delta T{\lambda _{\rm{B}}} $
(2) 式中,Δε是轴向应变变化量,ΔT是温差, Pe是光纤有效弹光系数, α和ξ分别是光纤的热膨胀系数和热光系数。
-
FBG传感器具有波长编码的特性,使得波分复用方案在FBG传感器的准分布方式中得到了研究及应用[10-11]。在该方案中,多个光纤光栅沿着同一根光纤分布,每个光栅都有各自的中心波长且互不重复,因此各光栅的反射光谱相互独立[12]。在一根或者多根光纤上布置若干个光纤光栅,通过光纤光栅解调仪进行数据采集继而传输至控制室完成数据的保存和分析,即可实现平面或空间中的准分布传感系统[13-15]。如图 1所示,在大范围内通过该方案可以实现多点实时监测。
本文中,光纤光栅解调仪采用美国MOI公司生产的SM130光纤光栅传感解调仪,分辨率小于1pm,精度小于10pm,扫描频率为1kHz;数据采集软件为Enlight v1.138。
图 2中,若将待测区划分成10个单元,将带有10个光栅的准分布式光纤布喇格光栅传感器中粘贴于该待测区,保证每个光栅均处于各自所在单元中心。由于整个光纤部分与待测区用胶水完全固定,故所测得应变实际为点应变。本文中,准分布式FBG传感器均采用纤维增强复合材料进行封装,外观如图 3所示。
-
试验对象为一个钢筋混凝土简支梁,混凝土强度等级为C25,纵向受力钢筋等级为HRB335,表 1为该梁的截面参量。在跨中的780mm上设置分配梁,在分配梁跨中施加集中荷载,试验系统示意图见图 4。
Table 1. Interface parameters of concrete beam
bottom steel 21 2 top steel 2 8 stirrup of encryption area 8@80 width of beam height of beam thickness of protective layer 120mm 160mm 25mm 将集中荷载通过分配梁施加于试验构件,由此构件在分配梁支座之间的区段中产生纯弯段。将此区段划分为6个单元,依次记为C1~C6,并在表面粘贴准分布点式FBG传感器。传感器内包含6个光栅,记为F1~F6,各光栅的中心波长分别为1526.260nm,1550.582nm,1559.553nm,1571.532nm,1577.473nm和1580.380nm,光栅的位置由各个单元的中心确定。
-
试验对象为工字型简支钢梁,表 2为该梁的截面参量。工字梁跨度为1820mm,在跨中的780mm上设置分配梁,在分配梁跨中施加集中荷载,试验系统示意图见图 5。
Table 2. Interface parameters of H-shaped steel beam
height width thickness of web average thickness of flange 180mm 94mm 6.5mm 10.7mm 将在分配梁区段内的钢梁跨中部分划分为12个单元,记为C1′~ C12′,本试验中采用切除部分工字钢上下翼缘的方式构造损伤,设定3种工况:(1)无损伤(记为W1);(2)有一处损伤,在C4′处(记为W2);(3)有两处损伤,分别在C4′和C8′处(记为W3)。试验中准分布FBG传感器中共有6个光纤光栅,记为F1~F6,中心波长分别为1526.576nm,1550.962nm,1559.936nm,1571.899nm,1577.811nm和1580.709nm,传感器沿钢梁纵向粘贴在下翼缘中心,每个光栅落于两个单元中心。图 6为传感器布置示意图。
-
试验采用逐级加载,每级2.5kN。通过目测,荷载加载至第3级(即5kN~7.5kN)时,在C4中产生了裂缝。故取出0kN~7.5kN共3级加载下的各测点应变数据(见表 3)进行分析。
Table 3. Strain values of each grating
load/kN strain values of each grating/με F1 F2 F3 F4 F5 F6 0 0 0 0 0 0 0 2.5 51.75 53.3 54.17 44.86 45.05 44.95 5 116.7 125.83 123.79 96.02 98.34 92.82 7.5 221.84 274.95 259.71 279.8 181.36 144.27 在第1级荷载(0kN~2.5kN)加载中,由于在纯弯段内各测点应变均相等,试验数据中各测点应变增量在44.86με~54.17με之间,波动范围较小,混凝土基本处于弹性阶段,与实际情况相符。
在第2级荷载(2.5kN~5.0kN)加载中,F1~F3的应变增量在65με~72με之间,F4~F6的应变增量在48με~52με之间,明显两边的应变增量已经开始不再同步,混凝土已经不再处于弹性阶段,可以判断F3和F4所在单元范围内即将出现裂缝。
在第3级荷载(5.0kN ~7.5kN)加载中,F1~F6的应变增量为:105με,149με,136με,183με,83με和52με。此时F4处应变发生了突变,且其增量明显达到了各测点中的最大值,可以判断此时裂缝在C4处已经出现;试验和分析结果与实际情况(见图 7)相符。
-
试验采用逐级加载,4kN为1级,加至48kN,任意选取第11级(44kN)荷载作用下3种工况中各光栅测点应变数据如图 8所示。
图 8a中,3种工况下各测点应变不同,可知其中两种工况下的钢梁有损伤;图 8b中,F2处应变变化最大,F3处应变变化明显大于F1,可知F2覆盖的单元(C3′和C4′)内有损伤且该损伤靠近F3所覆盖的C5′,即C4′损伤;图 8c中,F4处应变变化最大,由于C4′的损伤对F3和F5带来了影响,故两处应变变化相差不大,只能初步确定损伤发生在F4所覆盖范围中;图 8d中,F4处应变变化最大,F5处应变变化明显大于F3,因而可以确定C8′有损伤。分析结果与实际情况相符。
FBG传感器关于裂缝及损伤的监测应用研究
Application research on FBG sensor in the monitoring of fracture and damage
-
摘要: 为了满足结构健康监测的需求,采用试验方法研究了准分布式光纤布喇格光栅(FBG)传感器在裂缝监测和损伤定位中的应用。以钢筋混凝土简支梁和工字型钢梁为试验对象,对梁关键部位划分单元进行多点监测,取得了其应变变化的数据,并进行了分析以实现裂缝监测和损伤定位。结果表明,准分布式FBG传感器能够较为准确地对裂缝的发生及所测区域的损伤情况实现定位。Abstract: In order to meet the needs of structure health monitoring, the application of quasi-distributed fiber Bragg grating(FBG) sensor in crack monitoring and damage localization was studied in experimental method. By choosing the simply supported reinforced concrete beam and an H-shaped steel beam as the test object, the key location of the beam was divided into several units of multi-point monitoring to obtain the data of the strain. The data was analyzed to achieve the crack monitoring and damage location. The results show that quasi-distributed FBG sensor can accurately locate the occurrence of cracks and damage of the measured area.
-
Key words:
- fiber optics /
- structural health monitoring /
- quasi-distribution /
- crack /
- damage
-
Table 1. Interface parameters of concrete beam
bottom steel 21 2 top steel 2 8 stirrup of encryption area 8@80 width of beam height of beam thickness of protective layer 120mm 160mm 25mm Table 2. Interface parameters of H-shaped steel beam
height width thickness of web average thickness of flange 180mm 94mm 6.5mm 10.7mm Table 3. Strain values of each grating
load/kN strain values of each grating/με F1 F2 F3 F4 F5 F6 0 0 0 0 0 0 0 2.5 51.75 53.3 54.17 44.86 45.05 44.95 5 116.7 125.83 123.79 96.02 98.34 92.82 7.5 221.84 274.95 259.71 279.8 181.36 144.27 -
[1] KIRIKERA G R, BALOGUN O, KRISHNASWAMY S.Adaptive fiber Bragg grating sensor network for structural health monitoring:applications to impact monitoring[J]. Structural Health Monitoring, 2011, 10(3):5-16. [2] LI S Zh, WU Zh Sh. Development of distributed long-gage fiber optic sensing system for structural health monitoring[J]. Structural Health Monitoring, 2007, 6(2):133-143. doi: 10.1177/1475921706072078 [3] CONTE J P, LIU M, INAUDI D. Earthquake response monitoring and damage identification of structures using long-gage fiber optic sensors[C]//Proceedings of the 14th ASCE Engineering Mechanics Division Conference. Texas, Austin, USA: SPIE, 2000: 1-6. [4] INAUDI D, CASANOVA N. Geo-structural monitoring with long-gage interferometric sensors[J]. Proceedings of the SPIE, 2000, 3995:164-174. doi: 10.1117/12.387807 [5] OU J P, LI H. Structural health monitoring in mainland China:review and future trends[J]. Structural Health Monitoring, 2010, 9(3):219-231. doi: 10.1177/1475921710365269 [6] WAN L B, ZHANG B M, WANG D F, et al. Research on fiber Bragg grating strain sensor for structural health monitoring[J]. Laser Journal, 2002, 23(4):47-48(in Chinese). [7] TIAN Sh Zh, ZHAO X F, YANG W D. Applications of fiber Bragg grating sensor in civil engineering[J]. World Earthquake Engineering, 2006, 22(4):27-34(in Chinese). [8] LIU Y M, YU Zh Y, YANG H B, et al. The investigation of the nonlinear character istics of fiber Bragg gratings[J]. Laser Technology, 2006, 30(1):101-103(in Chinese). [9] LI H N, REN L. The structural health monitoring of fiber grating sensing technology[M]. Beijing:China Architecture & Building Press, 2008:16-17(in Chinese). [10] WANG Y B, LAN H J. Study of fiber Bragg grating sensor system based on wavelength-division multiplexing/time-division multiplexing[J]. Acta Optica Sinica, 2010, 30(8):2196-2201(in Chinese). doi: 10.3788/AOS [11] DONG B, HE Sh Y, HU Sh Y, et al. Study on themultiplexed sensor system based on tunable fiber laser with fiber Bragg grating[J]. Laser Technology, 2005, 29(6):608-610(in Chinese). [12] ZHANG X L, LIANG D K, LU J Y, et al. A high reliabile optic fiber Bragg grating sensor network design[J]. Chinese Journal of Lasers, 2011, 38(1):0105004(in Chinese). doi: 10.3788/CJL [13] ZHANG H Y, WANG D N, SHI Q P, et al. Optical intensity compensating method for time division multiplexing of fiber-optic hydrophone using a 3×3 coupler[J]. Chinese Journal of Lasers, 2011, 38(11):1105006(in Chinese). doi: 10.3788/CJL [14] RAO Y J, RIBEIRO A B L, JACKSON D A, et al.Simultaneously sptaial-, time-, and wavelength-division multiplexed in-fiber Bragg grating sensor network[J]. Proceedings of the SPIE, 1996, 2838:23-30. doi: 10.1117/12.259796 [15] JACKSON D A, RIBEIRO A B L, REEKIE L, et al.Simple multiplexing scheme for a fiber-optic grating sensor network[J]. Optics Letters, 1993, 18(14):1192-1194. doi: 10.1364/OL.18.001192