-
实验中所用的准东煤颗粒粒径为200目以上(小于75μm)。采用BENSON[13]的方法对煤样进行处理,其制备流程如下:取10g空气干燥基煤样,加入1000mL去离子水,在室温下利用磁力搅拌器进行搅拌,以实现煤与去离子水的充分接触,搅拌时间分别为1min, 5min, 15min, 30min, 60min和180min,浸渍后对溶液进行抽滤,得到水洗处理的煤样,即为水溶样本。随后,取3h水洗煤样5g,加入500mL, 1mol/L的醋酸铵溶液重复上述步骤得到醋酸铵处理的煤样,即为醋酸铵溶样本。最后,取3h醋酸铵处理的煤样5g,加入500mL, 1mol/L的稀盐酸溶液重复上述步骤得到盐酸处理的煤样,即为盐酸溶样本。处理后的煤样放置在空气中48h与空气中的水分进行平衡,使各煤样均恢复空气干燥基状态以减少测量误差。从各样品中取出50mg用于微波消解后进行ICP-OES(Thermal 6300)测量,其余样品采用LIBS技术进行固体碱金属含量分析。
制取LIBS测量煤样时,取2g处理后的煤,利用液压机(压力为30MPa)将煤粉压制成25mm直径、约5mm厚的煤饼,光滑的样本表面可提高LIBS测量的重复性。
-
LIBS实验系统如图 1所示。Nd:YAG脉冲激光器(法国QUANTEL,Brilliant B)产生10Hz波长为1064nm、脉宽为6ns的激光,采用激光频率降低器将激光从10Hz降至1Hz。为避免激光作用在煤样表面同一点上引起的实验误差,待测煤样被固定在转速为2.5r/min的转动电机上。激光通过一直径50mm、焦距150mm的石英凸透镜聚焦在煤样表面下2mm处[14]。为避免煤样释放的挥发分被激光点燃所形成的高温火焰对实验测量的影响,在煤样表面用8L/min的氮气进行吹扫。激光与煤样作用产生的等离子体信号通过一直径50mm、焦距60mm的石英凸透镜收集到光谱仪内。光谱仪(Ocean Optics,USB2000+)拍谱范围为200nm~900nm,包含2048个像素。为避免轫致辐射对实验的影响,采用DG535延时脉冲发生器来控制激光与信号之间的延迟。经测试,光谱仪与激光之间的延迟时间为0.2μs,光谱仪的采样门宽设置为4ms。
-
实验中以特征谱线Na双线588.995nm,589.592nm和K线766.490nm作为Na,K信号测量谱线,如图 2所示。对每种煤样采集4次光谱数据,每次采集20组数据,共80组原始数据。采用峰面积作为信号强度,对每种煤样的80组数据的Na,K强度进行求解后,去掉其中最高的15%和最低的15%,对余下的数据取平均值作为该煤样的Na,K元素信号强度。
-
为了获得Na,K的定量含量,必须对元素的相对信号强度进行标定实验。LIBS常用的标定方法包括:传统定标方法、内标法、自由定标法和智能算法标定法[15]。由于Na,K元素的特征谱线较强,基于标准样本的定量化方法可以较好地预测出未知实验样本的元素含量,本实验中采用传统定标法进行标定。为了避免标准样本与实验样本基体之间存在差异,本实验中使用盐酸处理180min后的煤样作为基体,并假设基体内不含有Na,K元素。向每2g基体中加入20mL不同浓度的Na,K标定溶液(见表 1),进行充分搅拌混合,将形成的溶液放入60℃的烘干箱内烘干,再放置到空气中与水分平衡48h,获得4个标定样本。最后对4种标定样本及基体进行钠元素和钾元素的定量标定。
Table 1. Calibration solution and calibration sample
sample calibration solution/(μg·mL-1) calibration sample/(μg·g-1) Na K Na K basal sample 0 0 0 0 sample 1 50 10 500 100 sample 2 100 20 1000 200 sample 3 150 30 1500 300 sample 4 200 40 2000 400 -
本文中首先利用不同能量的激光对原煤和盐酸洗180min的煤进行激光能量实验以确定其影响规律。工况选取为60mJ/pulse, 80mJ/pulse, 120mJ/pulse, 140mJ/pulse, 160mJ/pulse, 180mJ/pulse。图 3和图 4分别为原煤与盐酸洗180min煤Na,K元素LIBS信号强度与激光能量之间的关系。图 5为原煤Na,K实验数据相对标准偏差(relative standard deviation, RSD)与激光能量之间的关系。
由图 3及图 4可看出,Na元素、K元素信号强度与激光能量之间基本呈线性关系。对于原煤,60mJ/ pulse的激光即可激发出Na元素、K元素信号,当激光能量达到180mJ/pulse时,Na元素的信号强度超出了光谱仪能检测到的最大光强,因此实验时激光强度必须低于180mJ/pulse; 对于盐酸洗180min的煤,60mJ/pulse的激光不足以充分激发出K元素信号,在这段区域测量的灵敏度较低,当激光能量到达80mJ/pulse以上时, K信号恢复线性关系,因此实验的激光强度必须高于80mJ/pulse。由图 5可以看出,虽然Na元素的RSD随着能量的上升存在增大趋势,其数值一直小于K元素,说明Na元素的数据波动性比K元素小得多,测量准确性较高。低能量激光激发出的K元素信号极其不稳定,其RSD甚至高达50%以上,随着能量的提升,K元素RSD数值逐渐变小,在160mJ/pulse时达到较低值。基于以上结果,本文中选取160mJ/pulse能量的激光作为LIBS实验激发光源。
-
对于激光发射光谱的传统定标,多采用Scheibe-Lomakin公式[15]进行标定:
$ {I_i} = {a_i}{C_i}^{{b_i}} $
(1) 式中,i表示待测元素,Ii代表待测元素的LIBS谱线强度,Ci代表待测元素在样本中的浓度,ai和bi为常数。ai与测量样品、待测元素、收集效率等有关;bi为谱线自吸收系数,在无自吸收情况下为1。由于Na,K属于煤中含量较低的次量元素,因此未有明显的自吸收现象,标定曲线应该呈现直线特征。
图 6和图 7为Na元素、K元素LIBS强度(扣除基体强度)与元素浓度CNa和CK的标定曲线,通过最小二乘法可以算出Na,K回归方程,见下:
$ \left\{ \begin{array}{l} {I_{{\rm{Na}}}} = 1708 + 183.7{C_{{\rm{Na}}}}\\ {R^2} = 0.994{\rm{ }} \end{array} \right. $
(2) $ \left\{ \begin{array}{l} {I_{\rm{K}}} = - 155.4 + 697.56{C_{\rm{K}}}\\ {R^2} = 0.986 \end{array} \right. $
(3) 式中, R表示相关系数, CNa和CK的系数为定标曲线的斜率(以下用S来表示)。
本文中对Na元素、K元素的检测极限进行了计算,检测极限是指定量分析方法可能检测的最低量或最低浓度,通常根据以下公式[16]得出:
$ {L_{\rm{d}}} = \frac{{3{\sigma _{\rm{b}}}}}{{S}} $
(4) 式中, Ld表示检测极限,σb表示背景噪音的标准偏差值,S表示定标曲线的斜率。
选择元素浓度最低的煤样(盐酸洗180min)光谱图中Na,K峰值附近的2nm波长范围的连续背景为背景噪音,通过计算得出标准偏差值。S由(2)式和(3)式给出,将S带入(4)式即可算出元素的检测极限。计算求得Na元素的检测极限为133.1μg/g,K元素的检测极限为34.6μg/g,Na元素和K元素的检测极限值均比它们在煤中的质量浓度低很多。因此,对于煤中Na元素、K元素浓度的测量,LIBS技术既有足够高的标定线性度,又有相对低的检测极限。
-
从上述检测结果发现,利用LIBS手段可以实现较高的标定线性度,也可以达到相对低的检测极限。为了验证LIBS针对不同碱金属赋存形态的样本检测的可行性和重复性,本文中通过依次对准东煤进行去离子水洗、醋酸铵洗、稀盐酸洗等化学处理方法,以及处理时间的不同(水洗和酸洗不同时间制备的样本,时间分别为1min, 5min, 15min, 30min, 60min和180min),制备了18种不同Na,K赋存形态的煤样本,对这些样品进行LIBS检测,并用ICP检测加以验证。
表 2中给出18种样本随化学处理时间变化的LIBS和ICP测量结果。ICP检测采用了Na元素的特征谱线588.9nm(R2=0.994)和K元素的特征谱线766.4nm(R2=0.986)。对比原煤和处理后煤样中碱金属含量可以看出,水洗等化学处理显著降低了准东煤中的碱金属含量。经过水洗、醋酸铵洗、盐酸洗等一系列处理,准东煤中钠含量从最初的约2466.53μg/g降低到约634μg/g,钾含量从最初的482.39μg/g降低到约351.79μg/g。从原煤样本到盐酸溶样本,LIBS有效地测量了准东煤中各种赋存形式的Na元素、K元素。同时,LIBS与ICP测量数据之间的相对误差较小,Na元素、K元素测量最小相对误差仅为0.11%,而最大相对误差只有6.76%。因此,LIBS不仅对原煤中Na元素、K元素含量实现准确、在线分析,而且对不同赋存形态Na,K样本也同样达到较高的重复性。
Table 2. Comparisons between LIBS and ICP measurement on Na and K derived from water washing, NH4Ac washing and HCl washing samples
sample Na concentration K concentration LIBS/(μg·g-1) ICP/(μg·g-1) relative error/% LIBS/(μg·g-1) ICP/(μg·g-1) relative error/% basal coal 2466.53 2445.00 0.87 482.39 477.00 1.12 H2O washing 1min 1370.78 1406.00 2.57 445.03 435.79 2.08 H2O washing 5min 1320.81 1300.00 1.58 446.00 421.17 5.57 H2O washing 15min 1284.17 1263.00 1.65 433.50 419.02 3.34 H2O washing 30min 1203.82 1249.00 3.75 415.28 415.75 0.11 H2O washing 60min 1192.72 1255.00 5.22 421.49 409.96 2.74 H2O washing 180min 1143.72 1221.00 6.76 416.27 404.47 2.84 NH4Ac washing 1min 775.47 767.50 1.03 393.54 379.10 3.67 NH4Ac washing 5min 797.08 779.30 2.23 382.00 382.64 0.17 NH4Ac washing 15min 750.80 751.60 0.11 376.41 378.65 0.59 NH4Ac washing 30min 762.83 772.10 1.22 381.28 383.38 0.55 NH4Ac washing 60min 764.57 761.70 0.38 387.50 377.90 2.48 NH4Ac washing 180min 775.94 787.20 1.45 379.31 382.89 0.94 HCl washing 1min 650.72 638.34 1.90 366.81 351.04 4.30 HCl washing 5min 663.94 652.35 1.75 371.06 351.17 5.36 HCl washing 15min 654.94 636.23 2.86 365.10 350.66 3.96 HCl washing 30min 644.30 650.39 0.95 353.56 351.51 0.58 HCl washing 60min 622.00 640.42 2.96 357.32 351.48 1.63 HCl washing 180min 634.53 646.79 1.93 360.70 351.79 2.47
准东煤化学处理后碱金属含量的激光测量研究
Measurement of alkali content in Zhundong coal after chemical fractionation treatment by LIBS method
-
摘要: 为了评价水洗、醋酸铵洗和盐酸洗等化学处理方法去除准东煤中碱金属的能力,分析激光诱导击穿光谱(LIBS)技术快速测量煤中碱金属含量的可行性和准确性,采用去离子水、醋酸铵溶液和稀盐酸溶液依次对准东煤进行化学处理,并利用LIBS技术对各样本中的Na,K元素进行测量,同时与电感耦合等离子光谱(ICP)检测结果进行对比,得到了验证LIBS技术测量准东煤中碱金属含量可靠性的实验数据。结果表明,水洗等化学处理可高效地去除准东煤中的碱金属,而LIBS技术对不同样本中的Na,K元素测量重复性较好,并且具有较高的灵敏度和较低的检测极限,LIBS检测结果与ICP的相对误差不超过7%。该结果说明LIBS可作为在线测量煤样中碱金属含量的一种有效手段。Abstract: In order to evaluate the ability of chemical fractionation treatments, including water (H2O) washing, ammonium acetate washing (NH4Ac) and hydrochloric acid (HCl) washing, for the removal of alkali metal, and analyze the feasibility and accuracy of laser induced breakdown spectroscopy (LIBS) measuring the alkali content in coal, a sequence of solutions including deionized water, ammonium acetate and hydrochloric acid were employed to treat Zhundong coal. The contents of sodium and potassium in treated coal were measured by LIBS and compared with the measurements of inductively coupled plasma (ICP) spectroscopy. The experimental results of confirming the ability of LIBS in measuring the alkali content in coal were obtained.The results show chemical treatment such as washing can effectively remove the alkali metal from Zhundong coal, and LIBS technique has good repeatability of Na, K measurement for different samples. The measurements of Na and K by LIBS had high sensitivity and low detection limit. The relative error between LIBS and ICP was less than 7%. LIBS could be a valid method to achieve the online measurement of alkali metal in coal.
-
Table 1. Calibration solution and calibration sample
sample calibration solution/(μg·mL-1) calibration sample/(μg·g-1) Na K Na K basal sample 0 0 0 0 sample 1 50 10 500 100 sample 2 100 20 1000 200 sample 3 150 30 1500 300 sample 4 200 40 2000 400 Table 2. Comparisons between LIBS and ICP measurement on Na and K derived from water washing, NH4Ac washing and HCl washing samples
sample Na concentration K concentration LIBS/(μg·g-1) ICP/(μg·g-1) relative error/% LIBS/(μg·g-1) ICP/(μg·g-1) relative error/% basal coal 2466.53 2445.00 0.87 482.39 477.00 1.12 H2O washing 1min 1370.78 1406.00 2.57 445.03 435.79 2.08 H2O washing 5min 1320.81 1300.00 1.58 446.00 421.17 5.57 H2O washing 15min 1284.17 1263.00 1.65 433.50 419.02 3.34 H2O washing 30min 1203.82 1249.00 3.75 415.28 415.75 0.11 H2O washing 60min 1192.72 1255.00 5.22 421.49 409.96 2.74 H2O washing 180min 1143.72 1221.00 6.76 416.27 404.47 2.84 NH4Ac washing 1min 775.47 767.50 1.03 393.54 379.10 3.67 NH4Ac washing 5min 797.08 779.30 2.23 382.00 382.64 0.17 NH4Ac washing 15min 750.80 751.60 0.11 376.41 378.65 0.59 NH4Ac washing 30min 762.83 772.10 1.22 381.28 383.38 0.55 NH4Ac washing 60min 764.57 761.70 0.38 387.50 377.90 2.48 NH4Ac washing 180min 775.94 787.20 1.45 379.31 382.89 0.94 HCl washing 1min 650.72 638.34 1.90 366.81 351.04 4.30 HCl washing 5min 663.94 652.35 1.75 371.06 351.17 5.36 HCl washing 15min 654.94 636.23 2.86 365.10 350.66 3.96 HCl washing 30min 644.30 650.39 0.95 353.56 351.51 0.58 HCl washing 60min 622.00 640.42 2.96 357.32 351.48 1.63 HCl washing 180min 634.53 646.79 1.93 360.70 351.79 2.47 -
[1] YANG Zh C, LIU J L, HE H G. Study on properties of Zhundong coal in Xinjiang region and type-selection for boilers burning this coal sort[J]. Thermal Power Generation, 2010, 39(8):38-40(in Chinese). [2] ZHANG J, HAN Ch L, YAN Zh, et al. The varying characterization of alkali metals (Na, K) from coal during the initial stage of coal combustion[J]. Energy & Fuels, 2001, 15(4):786-793. [3] LIU J, WANG Zh H, XIANG F P, et al.Modes of occurrence and transformation of alkali metals in Zhundong coal during combustion[J]. Journal of Fuel Chemistry and Technology, 2014, 42(3):316-322(in Chinese). [4] CHEN Ch, ZHANG Sh Y, LIU D H, et al.Existence form of sodium in high sodium coals from Xinjiang and its effect on combustion process[J]. Journal of Fuel Chemistry and Technology, 2013, 41(7):832-838(in Chinese). [5] YU Ch J, TANG Y L, FANG M X, et al. Experimental study on alkali emission during rice straw pyrolysis[J]. Journal of Zhejiang University (Engineering Science Edition), 2005, 39(9):1435-1444(in Chinese). [6] YAO Sh Ch, LU J D, XIE Ch L, et al. Quantitative analysis of laser induced carbon plasma by intensity ratio calibration[J]. High Power Laser and Particle Beams, 2008, 20(7):1089-1092(in Chinese). [7] ZHENG J P, LU J D, YAO Sh Ch, et al. Application review on laser-induced breakdown spectroscopy technology in coal analysis[J]. Guangdong Electric Power, 2012, 25(10):13-21(in Chinese). [8] YU L Y, LU J D, CHEN W, et al. Analysis of pulverized coal by laser-induced breakdown spectroscopy[J]. Plasma Science & Technology, 2005, 7(5):3041-3044. [9] LI J, LU J, LIN Z, et al. Effects of experimental parameters on elemental analysis of coal by laser-induced breakdown spectroscopy[J]. Optics & Laser Technology, 2009, 41(8):907-913. [10] FENG J, WANG Z, WEST L, et al. A PLS model based on dominant factor for coal analysis using laser-induced breakdown spectroscopy[J]. Analytical and Bioanalytical Chemistry, 2011, 400(10):3261-3271. doi: 10.1007/s00216-011-4865-y [11] HE Y, QIU K Z, WHIDDON R, et al. Release characteristic of different classes of sodium during combustion of Zhundong coal investigated by laser-induced breakdown spectroscopy[J]. Science Bulletin, 2015, 60(22):1927-1934. doi: 10.1007/s11434-015-0922-9 [12] HE Y, ZHU J J, LI B, et al. In-situ measurement of sodium and potassium release during oxy-fuel combustion of lignite using laser-induced breakdown spectroscopy:effects of O2 and CO2 concentration[J]. Energy & Fuels, 2013, 27(2):1123-1130. [13] BENSON S A, HOLM P L.Comparison of inorganics in three low-rank coals[J]. Industrial & Engineering Chemistry Product Research and Development, 1985, 24(1):145-149. [14] BODY D, CHADWICK B L. Optimization of the spectral data processing in a LIBS simultaneous elemental analysis system[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2001, 56(6):725-736. doi: 10.1016/S0584-8547(01)00186-0 [15] FENG J. Study to improve the accuracy of LIBS measurement and the application to coal analysis[D]. Beijing: Tsinghua University, 2011: 22-25(in Chinese). [16] WANG Zh H, ZHU Zh B. Microscopic laser emission spectrum quantitative analysis on the fundamental formula[J]. Rock and Mineral Analysis, 1989, 2(9):149-151(in Chinese).