-
靶材LIBS探测(开关电压U=0V)和电弧光谱探测(开关电压U分别为1000V, 3000V, 5000V)需要光衰减片的衰减程度不同,光谱强度分别进行归一化。
-
靶材的LIBS拟合曲线如图 6所示。触发激光脉冲的能量分别为0.414mJ,0.952mJ,1.624mJ和2.435mJ,PMT的工作电压为-300V。图 6中,光谱拟合曲线的范围是350nm~800nm,谱线的强度基本随激光脉冲能量的增大而增强,且不同曲线在长波段的趋势基本一致,但在短波段随能量增强比例不是非常一致。甚至在400nm~550nm区间内, 1.624mJ能量对应光谱强度大于2.435mJ能量对应光谱强度,这个问题需后续进一步研究。从图中可以看出,400nm, 500nm, 600nm, 700nm和800nm处有各曲线的极大值点,说明各点附近存在线状谱线。谱线整体的增强是由于照射靶材激光脉冲的能量增大,使激发等离子体的密度、温度和数量都有了较大的增加,而连续光谱和线状谱线的强度都得到了增加。
-
开关电弧光谱拟合曲线如图 7所示。其中,图 7a~图 7c分别是开关电压为1000V, 3000V, 5000V时测得的电弧光谱拟合曲线,且在每个电压下有对应0.414mJ, 0.952mJ, 1.624mJ和2.435mJ这4种不同激光脉冲触发能量的光谱拟合曲线;图 7d是在激光脉冲能量相同且为2.435mJ、开关电压为1000V, 3000V, 5000V时测得的电弧光谱拟合曲线,PMT的工作电压为-300V。图 7a~图 7c中, 相同的开关电压、不同激光脉冲能量的电弧光谱强度和轮廓基本相同,说明脉冲激光产生的初始等离子体作为电弧中碰撞激发的种子源,其数量差异表现在最终电弧光谱上的强度差异,可以忽略不计,电弧光谱的强度主要由开关电压大小决定;拟合曲线的两端有明显的翘起,中间相对平缓。图 7d中开关电压越大,电弧谱线的强度有明显的增大,这是因为开关内部电场强度越大,粒子的相互碰撞会越频繁,自由电子的雪崩效应随之越强,产生的等离子体也会越多。
等离子体要达到完全热平衡的条件很苛刻,但在实验条件下,可以获得局域热力学平衡体系,此时等离子体体系接近或达到局部的热力学平衡态,根据Griem的判据,电弧放电等离子体属于局部热平衡等离子体[16]。于是,本文中研究的电弧等离子体状态可用Saha方程描述:
$\frac{{\left( {{n_{i + 1}}} \right){n_{\rm{e}}}}}{{{n_i}}} = \frac{{2{\mathit{g}_{i + 1}}}}{{{\mathit{\Lambda }^3}{g_\mathit{i}}}}\exp \left( {\frac{{{\mathit{\varepsilon }_{i + 1}} - {\mathit{\varepsilon }_i}}}{{{k_{\rm{B}}}T}}} \right) $
(1) $\mathit{\Lambda = }\sqrt {\frac{{{H^2}}}{{2{\rm{ \mathit{ π} }}{\mathit{m}_{\rm{e}}}{k_{\rm{B}}}T}}} $
(2) 式中,ni+1是i+1价离子的数量密度,ni是i价离子的数量密度,ne是电子数量密度,gi+1是i+1价离子的配分函数,gi是i价离子的配分函数,Λ是电子的德布罗意热波长,εi+1是i+1价离子的电离势,εi是i价离子的电离势,kB是玻尔兹曼常数,T是温度,me是电子质量,h是普朗克常数。
分析(1)式和(2)式可知,等离子体温度会对内部不同离子的比例产生影响,电压越大,电弧温度越高,碰撞粒子能量越大,更容易产生2价或3价离子。图 7d中5000V的拟合曲线在500nm, 650nm和750nm处相比1000V和3000V有更明显的凸起,附近原有的线状谱线得到极大增强,说明开关电压(或内建电场)的增大不是对所有等离子体均匀放大,而是使特定等离子体相比其它等离子体更易产生,开关电压(内建电场)大小对电弧等离子体的产生可能具有一定的筛选。这是因为开关电压的大小会影响电弧等离子的碰撞剧烈程度,从而导致不同的电弧等离子体温度,最终影响不同等离子体的产生比例。
如图 8所示,在不同能量激光脉冲触发下,时延抖动随电压变化没有明显的趋势,但当激光能量下降到一定阈值时,时延抖动会有明显的增大,说明了触发阶段对时延抖动的重要影响。而且,电脉冲触发真空开关(electrical triggered vacuum switch, ETVS)相比LTVS的时延抖动大[17],两种开关的区别主要是触发机理的不同。这证明不同的触发激光能量和触发机制(两者均作用在触发阶段)会对时延抖动产生重要影响,而开关电压对时延抖动的影响较小。这是因为不同的激光能量和触发机制会对初始等离子的数量、密度和能量产生决定影响。激光能量较小或用电脉冲触发可能无法在特定电极表面区域产生大密度的初始等离子体(如图 6所示),从而无法快速有效地产生后续的碰撞等离子体并导通开关,表现为较大的时延和时延抖动。电弧是开关稳定导通的证明,是在最初的电子到达阳极导通回路后表现出的现象,因此其等离子体种类和密度与触发时延关联性不大,但电弧强度越大表明内部传递的自由电荷越多,导致开关电压的下降沿越陡,提升开关性能。而如图 7所示,电压越大导致电弧光谱强度越大,而不同触发激光能量对电弧光谱强度基本无影响,表明开关电压大小对开关导通时电压下降沿陡度这一开关性能有重要影响,而触发激光能量对电压下降沿陡度基本无影响。
-
靶材LIBS和5000V开关电压下电弧光谱的拟合曲线的趋势及轮廓比较如图 9所示,触发激光脉冲的能量均为2.435mJ。观察拟合曲线的对比图,发现范围两端的频率成分强度均比中间大;曲线均有多个峰值,表明有不少于峰值数的线状谱线,这是因为激光照射靶材和开关电弧均产生了多种离子或等离子体,然而两条拟合曲线的趋势没有完全重合,峰值对应波长有所偏差,两者线状谱线的位置有所不同,激光照射靶材所产生的离子或等离子体不同种类激发比例与之后其作为种子源的电弧的离子或等离子体不同种类激发比例不相同,初始等离子体在强电场条件下的碰撞激发使等离子体的数量密度和成分比例发生了变化。猜测这种成分比例变化主要是等离子体激光吸收加热碰撞(高频电磁场作用)和静电场加速碰撞两种作用机制的不同所导致,具体的机理还需进一步的研究。
激光触发真空开关光谱和导通特性实验研究
Experimental study on spectrum and conduction properties of laser triggered vacuum switch
-
摘要: 为了研究激光触发真空开关的靶材激光诱导击穿光谱和电弧光谱,分析影响时延抖动的微观因素,利用单脉冲纳秒激光轰击位于开关阴极的靶材激发等离子体,采用滤光片和光电倍增管组合使用的方法,取得了离散波长光强的数据,建立拟合曲线,进行了理论分析。结果表明,脉冲激光能量增大可以提高靶材激光诱导击穿光谱的强度,但几乎不影响电弧光谱的强度;增大开关两端电压可以提高电弧光谱强度;在开关强电场作用下,电弧等离子体碰撞激发,等离子体的成分比例随电压大小发生变化;时延抖动与电压大小无关,与自由电子运动状态和电弧离子种类无关,主要在触发阶段受影响,而相比激光能量,开关电压大小对导通时的电压下降沿陡度起主要作用。这一结果对激光触发真空开关中激光与靶材相互作用、脉冲电弧和时延抖动的进一步研究是有帮助的。Abstract: In order to study laser-induced breakdown spectroscopy(LIBS) and arc spectrum of laser-triggered vacuum switch(LTVS), and analyze the micro factors affecting delay jitter. By using single-pulse ns laser to bombard the target plasma located on switch cathode and the combined method of photoelectric multiplier tube and optical filters, the data of light intensity of discrete wavelengths and the fitting curve were gotten. After theoretical analysis, the results show that the increase of the pulsed laser energy could improve the strength of target LIBS, but almost don't affect the strength of arc spectrum. The increase of switch voltage can improve the intensity of arc spectrum. Arc plasma collides and excites in the strong electric field at the switch. The ingredient proportion of plasma changes with the change of voltage. Jitter is independent of voltage magnitude, motion status of free electrons and races of arc plasmas. The main affection takes place in the triggering period. Not laser energy but switch voltage plays a major role in the steepness of voltage drop. The results are useful for the further study about laser-target interaction, pulsed-arc and delay-jitter of LTVS.
-
[1] BRANNON P J, RILEY M E. A model for the operation of a laser-triggered vacuumlow-inductance switch[J]. IEEE Transactions on Plasma Science, 1989, 17(6):859-862. doi: 10.1109/27.41223 [2] ZHOU Z, LIAO M, ZOU J, et al. Initial plasma development of field-breakdown triggered vacuum switch[J]. IEEE Transactions on Plasma Science, 2011, 39(1):360-363. doi: 10.1109/TPS.2010.2049850 [3] WILLIAMAND P F, GUENTHER A H. Triggering of a gas filled spark gaps[J]. Plenum Press, 1990, 3(3):145-149. [4] EARLEY L M, SCOTT G L. Firing characteristics of a low-jitter miniature laser-triggered vacuum switch[J]. IEEE Transactions on Plasma Science, 1990, 18(2):247-249. doi: 10.1109/27.131028 [5] SUGAWARA A, SATOU K, ITOU T, et al. Effects of electrode materials for arc-firing probability and switching time in UV-laser triggered vacuum gap[C]//Eleventh International Symposium of High Voltage Engineering 1999. New York, USA: IEEE, 1999: 383-385. [6] WARREN T, DICKENS J, NEUBER A, et al. Development of improved triggered vacuum switches[C]//Pulsed Power Conference, 1999. New York, USA: IEEE, 1999: 1264-1267. [7] XIE W Ch, JIANG W B, GAO Y Q.Spectral analysis of Ar plasma-arc under different experimental parameters[J].Optik-International Journal for Light and Electron Optics, 2013, 124(5):420-424. doi: 10.1016/j.ijleo.2011.12.051 [8] BILLOUX T, BORETSKIJ V, CRESSAULT Y, et al. Emission spectrum of the electric arc discharge in CO2 between copper electrodes[C]//ⅩⅪth International Symposium Plasma Chemistry.Cairns, Auotralie: ISPC, 2013: 17-29. [9] WEGLOWSKI M S. Investigation on the arc light spectrum in GTA welding[J]. Journal of Achievements in Materials and Manufacturing Engineering, 2007, 20(1/2):519-522. [10] DONG M. Properties of laser-induced breakdown spectroscopy between liquid steel and solid steel[J]. Acta Optica Sinica, 2011, 31(1):263-268(in Chinese). [11] NUNES L C, da SILVA G A, TREVIZAN L C, et al. Simultaneous optimization byneuro-genetic approach for analysis of plant materials by laser inducedbreakdown spectroscopy[J].Spectrochimica Acta, 2009, B64(6):565-572. [12] WANG Y, ZHAO N J, MA M J, et al. Chromium detection in water enriched with graphite based on laser-induced breakdown spectroscopy[J]. Laser Technology, 2013, 37(6):808-811(in Chinese). [13] ZHAO X X, LUO W F, ZHANG X W, et al. Measurement of brass plasma parameters based on laser-induced breakdown spectroscopy[J]. Laser Technology, 2013, 37(1):93-96(in Chinese). [14] AHMED R, BAIG M A. A comparative study of single and double pulse laser induced breakdown spectroscopy[J]. Journal of Applied Physics, 2009, 106(3):033307. doi: 10.1063/1.3190516 [15] WANG Q. Experimental comparison investigation on emission spectra of reheating doubleand single pulses laser-induced Fe plasmas[J]. Acta Optica Sinica, 2011, 31(10):1030002(in Chinese). doi: 10.3788/AOS [16] CHEN W P. Experimental research to control the temperature of arc discharge plasma used to produce NO[D].Wuhan: Huazhong University of Science and Technology, 2011: 13-14(in Chinese). [17] LIAO M F, DUAN X Y, ZOU J Y.Analysis on heat conduction model of surface-flashover triggered vacuum switch[J].Proceeding of the CSEE, 2008, 28(15):118-122(in Chinese).