高级检索

基于荧光微球的显微镜点扩散函数修正模型

鹿伟民, 杨西斌, 文刚, 郑贤良, 李辉, 熊大曦

鹿伟民, 杨西斌, 文刚, 郑贤良, 李辉, 熊大曦. 基于荧光微球的显微镜点扩散函数修正模型[J]. 激光技术, 2016, 40(5): 638-642. DOI: 10.7510/jgjs.issn.1001-3806.2016.05.005
引用本文: 鹿伟民, 杨西斌, 文刚, 郑贤良, 李辉, 熊大曦. 基于荧光微球的显微镜点扩散函数修正模型[J]. 激光技术, 2016, 40(5): 638-642. DOI: 10.7510/jgjs.issn.1001-3806.2016.05.005
LU Weimin, YANG Xibin, WEN Gang, ZHENG Xianliang, LI Hui, XIONG Daxi. An optimized model of point spread function of microscopy based on fluorescence beads[J]. LASER TECHNOLOGY, 2016, 40(5): 638-642. DOI: 10.7510/jgjs.issn.1001-3806.2016.05.005
Citation: LU Weimin, YANG Xibin, WEN Gang, ZHENG Xianliang, LI Hui, XIONG Daxi. An optimized model of point spread function of microscopy based on fluorescence beads[J]. LASER TECHNOLOGY, 2016, 40(5): 638-642. DOI: 10.7510/jgjs.issn.1001-3806.2016.05.005

基于荧光微球的显微镜点扩散函数修正模型

基金项目: 

国家自然科学基金资助项目(61475185);国家自然科学基金青年科学基金资助项目(61405238);中国科学院百人计划资助项目

详细信息
    作者简介:

    鹿伟民(1990-),男,硕士研究生,主要从事超分辨率显微成像的研究。

    通讯作者:

    熊大曦,E-mail:xiongdx@sibet.ac.cn

  • 中图分类号: O439

An optimized model of point spread function of microscopy based on fluorescence beads

  • 摘要: 为了修正显微镜点扩散函数荧光微球传统测量方法中微球直径对测量结果的影响、提高显微镜点扩散函数的测量精度,采用理论仿真、最小二乘拟合的方法,建立荧光微球等效2维浓度分布,模拟仿真了荧光微球显微成像过程;利用最小二乘拟合以及残差拟合的方法,得到荧光微球直径、荧光微球强度分布半峰全宽与系统实际点扩散函数半峰全宽之间的关系模型,由此模型得到较为准确的系统点扩散函数半峰全宽。结果表明,使用100nm荧光微球对系统点扩散函数进行测量时,相对误差在1%左右。此研究结果说明通过该修正模型可以得到较为准确的系统点扩散函数。
    Abstract: In order to eliminate effect of fluorescent bead diameter on measurement results in traditional microscopic point spread function measurement method and improve the measurement accuracy, 2-D equivalent concentration distribution of fluorescent beads was deduced based on theoretical simulation and least square fitting method. The imaging process of fluorescent beads was simulated. The relationships among fluorescent beads diameter, full width at half maximum (FWHM) of fluorescent beads intensity distribution and FWHM of system point spread function were analyzed by using the least square fitting method and residual error fitting method. Precise FWHM correction model of point spread function was obtained. The results show that the relative error of point spread function FWHM is about 1% when measuring system point spread function with 100nm fluorescent beads. The precise measurement of point spread function is realizable with the optimized model.
  • [1]

    HU S Y,XU Zh B.Design of objective lens with long focus depthfor digital grayscale lithography[J].Laser Technology,2013,37(4):464-468(in Chinese).

    [2]

    YANG Ch P.The optical transfer function of a fluorescent confocalmicroscopewith extended Gaussian source[J].Laser Technology,2005,29(5):552-554(in Chinese).

    [3]

    RUST M J,BATES M,ZHUANG X.Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J].Nature Methods,2006,3(10):793-796.

    [4]

    HOLDEN S J,UPHOFF S,KAPANIDIS A N.Daostorm:an algorithm for high-density super-resolution microscopy[J].Nature Methods,2011,8(4):279-280.

    [5]

    ZHU L,ZHANG W,ELNTAN D,et al.Faster STORM using compressed sensing[J].Nature Methods,2012,9(7):721-723.

    [6]

    SHROFF S A,FIENUP J R,WILLIAMS D R.OTF compensation in structured illumination super-resolution images[J].Proceedings of the SPIE,2008,7094:709402.

    [7]

    SOMEKH M G,HSU K,PITTER M C.Effect of processing strategies on the stochastic transfer function in structured illumination microscopy[J].Journal of the Optical Society of America,2011,A28(9):1925-1934.

    [8]

    SOMEKH M G,HSU K,PITTER M C.Stochastic transfer function for structured illuminationmicroscopy[J].Journal of the Optical Society of America,2009,A26(7):1630-1637.

    [9]

    SOMEKHM G,HSU K,PITTER M C.Resolution in structured illumination microscopy:a probabilistic approach[J].Journal of the Optical Society of America,2008,A25(6):1319-1329.

    [10]

    HAEBERLE O.Focusing of light through a stratified medium:a practical approach forcomputing microscope point spread functions.Part Ⅰ:Conventional microscopy[J].Optics Communications,2003,216(1):55-63.

    [11]

    THEER P,MONGIS C,KNOP M.PSFj:know your fluorescence microscope[J].Nature Methods,2014,11(10):981-982.

    [12]

    SARDER P,NEHORAI A.Deconvolutionmethods for 3-D fluorescence microscopy images[J].IEEE Signal Processing Magzine,2006,23(3):32-45.

    [13]

    GU M.Advanced optical imaging theory[M].Berlin,Germany:Springer ScienceBusiness Media,2000:75.

    [14]

    HIRVONEN L M,WICKER K,MANDULA O,et al.Structured illumination microscopy of a living cell[J].European Biophysics Journal with Biophysics Letters,2009,38(6):807-812.

    [15]

    DAN D,YAO B L,LEI M.Structured illumination microscopy for super-resolution and optical sectioning[J].Chinese Science Bulletin,2014,59(12):1291-1307.

    [16]

    HAO D Zh,YANGL Y,ZHANG Y R.Analysisof signals and linear systems[M].Beijing:Higher Education Press,2005:68-69(in Chinese).

    [17]

    VOORT H T M,STRASTERS K C.Restoration of confocal images for quantitative image analysis[J].Journal of Microscopy,1995,178(2):165-181.

  • 期刊类型引用(7)

    1. 谢振坤,王硕,魏志鹏. 基于FPGA与DMD的微型近红外光谱采集系统设计. 仪表技术与传感器. 2024(11): 61-65 . 百度学术
    2. 陈杰,姚娜,武宁,吕海芳. 基于BP神经网络的苹果高光谱图像糖度定量分析. 塔里木大学学报. 2022(04): 69-76 . 百度学术
    3. 张伟,徐强,谢修敏,邓杰,覃文治,胡卫英,陈剑,宋海智. InGaAs纳米线雪崩焦平面探测器发展研究. 激光技术. 2021(01): 105-108 . 本站查看
    4. 王文倩,高明秀,郎坤,王佳凡. 基于小波变换的苹果园土壤全氮高光谱估测. 山东农业大学学报(自然科学版). 2021(05): 845-852 . 百度学术
    5. 张立欣,杨翠芳,陈杰,王亚明,张晓. BiPLS结合SPA对苹果可溶性固形物含量的近红外检测方法. 塔里木大学学报. 2021(04): 78-86 . 百度学术
    6. 郭志明,王郡艺,宋烨,殷晓平,邹彩霞,邹小波. 手持式可见近红外苹果品质无损检测系统设计与试验. 农业工程学报. 2021(22): 271-277 . 百度学术
    7. 王宿慧,张旭,张根伟,郭腾霄,丁学全. 微型近红外光谱仪研究进展. 红外技术. 2020(07): 688-696 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  5
  • HTML全文浏览量:  0
  • PDF下载量:  8
  • 被引次数: 14
出版历程
  • 收稿日期:  2015-07-06
  • 修回日期:  2015-07-15
  • 发布日期:  2016-09-24

目录

    /

    返回文章
    返回