高级检索

紧凑型光谱薄膜测厚仪的研制

刘佳敏, 陶泽, 张传维, 刘世元

刘佳敏, 陶泽, 张传维, 刘世元. 紧凑型光谱薄膜测厚仪的研制[J]. 激光技术, 2016, 40(4): 472-475. DOI: 10.7510/jgjs.issn.1001-3806.2016.04.003
引用本文: 刘佳敏, 陶泽, 张传维, 刘世元. 紧凑型光谱薄膜测厚仪的研制[J]. 激光技术, 2016, 40(4): 472-475. DOI: 10.7510/jgjs.issn.1001-3806.2016.04.003
LIU Jiamin, TAO Ze, ZHANG Chuanwei, LIU Shiyuan. Development of a compact spectral thickness measurement instrument for thin film[J]. LASER TECHNOLOGY, 2016, 40(4): 472-475. DOI: 10.7510/jgjs.issn.1001-3806.2016.04.003
Citation: LIU Jiamin, TAO Ze, ZHANG Chuanwei, LIU Shiyuan. Development of a compact spectral thickness measurement instrument for thin film[J]. LASER TECHNOLOGY, 2016, 40(4): 472-475. DOI: 10.7510/jgjs.issn.1001-3806.2016.04.003

紧凑型光谱薄膜测厚仪的研制

基金项目: 

湖北省科技支撑计划资助项目(2014BEC052);湖北省自然科学基金资助项目(2015CFB278);国家重大科学仪器设备开发专项资助项目(2011YQ160002)

详细信息
    作者简介:

    刘佳敏(1994-),男,硕士研究生,现主要从事光谱椭偏仪的研究

    通讯作者:

    张传维,E-mail:chuanweizhang@hust.edu.cn

  • 中图分类号: TN249

Development of a compact spectral thickness measurement instrument for thin film

  • 摘要: 为了开发一种用于测量各向同性均匀薄膜介质厚度的紧凑型薄膜测厚仪,采用了共光路垂直入射设计,利用薄膜干涉原理,通过非线性优化算法对反射光谱进行了拟合,反演计算出了薄膜样品的厚度。采用该仪器测量部分SiO2/Si薄膜样件,测量结果与商业椭偏仪测量结果之间的相对偏差小于0.5%,而单次测量时间仅为70ms。结果表明,该薄膜测厚仪具有对测量距离不敏感、光路简洁、结构紧凑及重复性精度良好等优点,对实现在线实时测量功能具有积极意义。
    Abstract: In order to develop a compact instrument to measure the thickness of isotropic uniform thin films, applying a common normal incident path and thin-film interference principle, the film thickness was calculated inversely by fitting the measured reflectance spectrum with nonlinear optimization algorithm. The relative error between the thickness of a SiO2/Si thin film measured by the proposed instrument and that measured by the commercial ellipsometer was less than 0.5%, and the time for a single measurement was about 70ms. Experimental results show that the proposed instrument has advantages of insensitivity to measuring distance, concise light path, compact structure and excellent repeatability. The study has great significance for online measurement of thin film thickness.
  • [1]

    JI H Z, ZOU J J, CUI B S. An on-line accurate measurement method for nano film thickness[J]. Infrared, 2011, 32(7):9-16(in Chin-ese).

    [2]

    MEN Z X, HE X, SUN F L. A simple method of optical film thickness measurement[J]. Vacuum, 2011, 48(5):32-34(in Chin-ese).

    [3]

    LI K P, WANG D S, LI C, et al. Study on optical thin film parameters measurement method[J]. Infrared and Laser Engineering, 2015, 44(3):1048-1052(in Chinese).

    [4]

    YANG T X, ZOU H, WANG L, et al. Determining the graded-index profiles of channel waveguides by prism coupling method[J]. Chinese Journal of Lasers, 2010, 37(3):689-695(in Chinese).

    [5]

    LIU S Y, CHEN X G, ZHANG C W. Development of a broadband Mueller matrix ellipsometer as a powerful tool for nanostructure metro-logy[J]. Thin Solid Films, 2015, 584:176-185.

    [6]

    GUROV I, VOLYNSKY M. White light microscopy for evaluating transparent films using switching model of overlapped fringes[C]//International Conference on Advanced Phase Measurement Methods in Optics and Imaging. New York,USA:American Institute of Physics(AIP) Publishing,2010:295-300.

    [7]

    LAAZIZ Y, BENNOUNA Y, CHAHBOUN N, et al. Optical characterization of low optical thickness thin films from transmittance and back reflectance measurements[J]. Thin Solid Films, 2000,372:149-155.

    [8]

    HALL J F, Jr, FERGUSON W F C. Optical properties of cadium sulfide and zinc sulfide from 0.6 micron to 14 micron[J]. Journal of the Optical Society of America, 1955, 45(9):714-720.

    [9]

    JING L K, JIANG Y R, NI T. Application of adaptive simulated annealing genetic algorithm in inverse of optical constants and thickness of the thin film[J]. Optical Technique, 2012, 38(2):218-222(in Chinese).

    [10]

    FUJIWARA H. Spectroscopic ellipsometry:principles and applications[M]. New York,USA:John Wiley Sons, 2007:43-48.

    [11]

    CHADAN K, COLTON D, PAIVARINTA L, et al. An introduction to inverse scattering and inverse spectral problems[M]. Philadelphia,USA:Society for Industrial and Applied Mathematics, 1997:83-85.

    [12]

    ZHANG C W, LIU S Y, SHI T L, et al. Improved model-based infrared reflectrometry for measuring deep trench structure[J]. Journal of the Optical Society of America, 2009, A26(11):2327-2335.

    [13]

    ZHOU T Y, YANG K Y, WU S Y. Determination of optical constants and thicknesses of high-reflection multilayer system[J]. Journal of Applied Optics, 2011, 32(1):128-132(in Chinese).

    [14]

    ZHENG R T, NGO N Q, BINH L N, et al. Two-stage hybrid optimization of fiber Bragg gratings for design of linear phase filters[J]. Journal of the Optical Society of America, 2004, A21(12):2399-2405.

    [15]

    HESSELING J P. A novel method of evaluating dynamic measurement uncertainty utilizing digital filters[J]. Mea-surement Science and Technology, 2009, 20(5):1-11.

    [16]

    CHEN H Y, CAO Y, HAN J. Evaluation of uncertainty in measurement based on a Monte Carlo method[J]. Journal of Electronic Mea-surement and Instrument, 2011, 25(4):301-308(in Chinese).

  • 期刊类型引用(0)

    其他类型引用(3)

计量
  • 文章访问数:  2
  • HTML全文浏览量:  0
  • PDF下载量:  16
  • 被引次数: 3
出版历程
  • 收稿日期:  2015-10-18
  • 修回日期:  2015-10-26
  • 发布日期:  2016-07-24

目录

    /

    返回文章
    返回