a-SiNx:H薄膜的热丝化学气相沉积及微结构研究
Research of hot wire chemical vapor deposition and micro-structure of a-SiNx:H thin film
-
摘要: 为了研究热丝温度对a-SiNx:H薄膜性能的影响,采用热丝化学气相沉积法,以SiH4,NH3,H2为反应气源,改变热丝温度沉积薄膜。通过紫外-可见光吸收谱、傅里叶红外透射光谱、光致发光光谱等测试手段对薄膜发光特性、微观结构及键合情况进行表征与分析。从测试情况可知,当热丝温度为1645℃时,H含量最大,N含量最小,同时其折射率最高,薄膜材料的有序度增大;当热丝温度为1713℃时,H含量减少,N含量达到最大,且随着热丝温度增大,薄膜中N含量又开始下降,内部缺陷态密度增加。结果表明,热丝法制备a-SiNx:H薄膜的热丝温度最佳值在1596℃~1680℃之间,此时所制备的薄膜折射率为2.0,适合应用于硅基太阳能电池减反射膜层,且具有较充分的氮、氢含量,薄膜结构、性能稳定。Abstract: In order to study the effect of hot wire temperature on the properties of a-SiNx:H thin films, by using hot wire chemical vapor deposition method and using SiH4, NH3, H2 as reaction gas source, a-SiNx:H films were deposited by changing the temperature of hot wire. Film luminescent properties, microstructure and bonding characteristics were gotten and analyzed in detail by means of measurement methods such as ultraviolet-visible optical absorption spectroscopy, Fourier transform infrared transmission spectroscopy, and photoluminescence spectrum. The results show that, when wire temperature is at 1645℃, H content reaches greatest, N content is extremely small, film has high refractive index and a large degree of order. When the wire temperature is at 1713℃, H content decreases, N content reaches extremes. And then, with the increase of hot wire temperature, N content decreases and internal defect intensity increases. The results show that the best value of hot filament temperature is between 1596℃ to 1680℃ and the refractive index of film is 2.0. The film, with full nitrogen and hydrogen contents and stable structure and characteristics, is suit to choose as silicon-based solar cell antireflection film.
-
Key words:
- thin films /
- SiNx:H /
- photoluminescence spectra /
- bonding structure /
- hot wire chemical vapor deposition
-
[1] YU W, MENG L H, GENG Ch L, et al. Structural properties of hydrogenated amorphous silicon nitride films deposited by facing targets sputtering[J]. Chinese Science Bulletin, 2010, 55(18):1799-1804(in Chinese). [2] WANG Y, SHEN D Zh, ZHANG J Y, et al. Influence of thermal annealing on the structural and optical properties of Si-rich silicon nitride films[J]. Chinese Journal of Liquid Crystals and Displays, 2005, 20(1):18-21(in Chinese). [3] LIU F Zh, SCOTT W, LYNN G, et al. Amorphous silicon nitride deposited by hot-wire chemical vapor deposition[J]. Journal of Applied Physics, 2004, 96(5):2973-2979. [4] LIAO W G, ZENG X B, WEN G Zh, et al. Photoluminescences and structure performances of Si-rich silicon nitride thin films containing Si quantum dots[J]. Acta Physica Sinica, 2013, 62(12):126801-126805(in Chinese). [5] DUERINCKX F, SZLUFCIK J. Defect passivation of industrial multi-crystalline solar cells based on PECVD silicon nitride[J]. Solar Energy Mater Solar Cells, 2002, 72(1):231-246. [6] PALOURA E, NAUKA K, LAGOWSKI J. Silicon nitride films grown on silicon below 300℃ in low power nitrogen plasma[J]. Applied Physics Letters, 1986, 49(2):97-99. [7] LUO Z, LIN X Y, YU C Y, et al. Infrared analysis on hydrogen content and Si-H bonding configurations of hydrogenated amorphous silicon films[J]. Acta Physica Sinica,2003,52(1):169-174(in Chinese). [8] LANFORD W A, RAND M J. The hydrogen content of plasma-deposited silicon nitride[J]. Journal of Applied Physics, 1978, 49(4):2473-2477. [9] MOLINARI M, RINNERT H, VERGNAT M. Improvement of the photoluminescence properties in a-SiNx films by introduction of hydrogen[J]. Applied Physics Letters, 2001, 79(14):2172-2174. [10] WANG M H, LI D Sh, YUAN Zh Zh. Photoluminescence of Si-rich silicon nitride:defect-related states and silicon nanoclusters[J]. Applied Physics Letters, 2007, 90(13):131901-131903. [11] LI T, JERZY K, KONG W, et al. Interference fringe-free transmission spectroscopy of amorphous thin films[J]. Journal of Applied Physics, 2000, 88(10):5764-5771. [12] YU W, HOU H H, WANG B Zh, et al. Microstrueture and optical properties of hydrogenated amorphous silicon nitride films[J]. Journal of Hebei University, 2003, 23(3):253-256(in Chinese). [13] MAITINEZ F L, del PRADO A, MATIL I, et al. Thermally induced changes in the optical properties of SiNx:H films deposited by the electron cyclotron resonance plasma method[J]. Journal of Applied Physics, 1999, 86(4):2055-2061. [14] SUN K F, LI Z Q, LI X. Influence of substrate temperature on SiN thin film deposited by RF magnetron reaction sputtering[J]. Process Technique and Materials, 2007,32(6):516-519(in Chinese). [15] LIAO W G, ZENG X B, WEN G Zh, et al. Photoluminescences and structure performances of Si-rich silicon nitride thin films containing Si quantum dot[J]. Acta Physica Sinica, 2013, 62(12):126801-126805(in Chinese).
计量
- 文章访问数: 6049
- HTML全文浏览量: 3264
- PDF下载量: 280
- 被引次数: 0