Measurement of nonlinear refractive index of bulk bismuth telluride based on reflection z-scan
-
摘要: 为了研究3维拓扑绝缘体碲化铋(Bi2Te3)的非线性光学特性,采用反射z扫描方法,实验测量了800nm飞秒脉冲激光的非线性折射系数。通过理论计算与实验数据拟合获得碲化铋晶体的非线性折射率达到10-14 m2/W数量级,为石英的105倍;随着入射功率的增大,其非线性折射率逐渐减小,在峰值光强达到85GW/cm2后趋于常数不变。结果表明,碲化铋是一种高非线性光学材料,有望应用于全光信号处理、光开关等方面。Abstract: In order to study nonlinear refractive index of bismuth telluride, a 3-D topological insulator, nonlinear refractive index of 800nm femtosecond pulse laser was measured by reflection z-scan method. After theoretical calculation and experimental data fitting, nonlinear refractive index of bismuth telluride crystal could reach the order of magnitude of 10-14m2/W, 105 times of that of quartz. Nonlinear refractive index decreased with the increase of incident power. Until peak intensity reached 85GW/cm2, nonlinear refractive index tended to be a constant. The results show that bismuth telluride is a remarkable nonlinear optical material which has huge potential in the application of all-optical signal processing and optical switching.
-
Keywords:
- nonlinear optics /
- nonlinear refractive index /
- reflection z-scan /
- bismuth telluride
-
-
[1] MOORE J E. The birth of topological insulators[J]. Nature, 2010, 464(7286):194-198.
[2] MOORE J. Topological insulators:the next generation[J]. Nature Physics, 2009, 5(6):378-380.
[3] BERNEVIG B A, HUGHES T L, ZHANG S C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells[J]. Science, 2006, 314(5806):1757-1761.
[4] ZHANG H, LIU C X, QI X L, et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface[J]. Nature Physics, 2009, 5(6):438-442.
[5] BONACCORSO F, SUN Z, HASAN T, et al. Graphene photonics and optoelectronics[J]. Nature Photonics, 2010, 4(9):611-622.
[6] SUN Z, HASAN T, TORRISI F, et al. Graphene mode-locked ultrafast laser[J]. American Chemical Society Nano, 2010, 4(2):803-810.
[7] ZHENG Z W, ZHAO C J, LU S B, et al. Microwave and optical saturable absorption in graphene[J]. Optics Express, 2012, 20(21):23201-23214.
[8] ZHANG H, VIRALLY S, BAO Q, et al. z-scan measurement of the nonlinear refractive index of graphene[J]. Optics Letters, 2012, 37(11):1856-1858.
[9] BERNARD F, ZHANG H, GORZA S P, et al. Towards mode-locked fiber laser using topological insulators[C]//Nonlinear Photonics. Washington DC, USA:The Optical Society of America, 2012:NTh1A.5.
[10] ZHAO C J, ZOU Y H, CHEN Y, et al. Wavelength-tunable picosecond soliton fiber laser with topological insulator:Bi2Se3 as a mode locker[J]. Optics Express, 2012, 20(25):27888-27895.
[11] LU S B, ZHAO C J, ZOU Y H, et al. Third order nonlinear optical property of Bi2Se3[J]. Optics Express, 2013, 21(2):2072-2082.
[12] CHEN S Q, ZHAO C J, LI Y, et al. Broadband optical and microwave nonlinear response in topological insulator[J]. Optical Materials Express, 2014, 4(4):587-596.
[13] LEE J, KOO J, CHI C, et al. All-fiberized, passively Q-switched 1.06m laser using a bulk-structured Bi2Te3 topological insulator[J]. Journal of Optics, 2014, 16(8):085203.
[14] KOO J, LEE J, CHI C, et al. Passively Q-switched 1.56m all-fiberized laser based on evanescent field interaction with bulk-structured bismuth telluride topological insulator[J]. Journal of the Optical Society of America, 2014, B31(9):2157-2162.
[15] LEE J, JUNG M, KOO J, et al. Passively Q-switched 1.89m fiber laser using a bulk-structured Bi2Te3 topological insulator[J]. IEEE Journal of Quantum Electronics, 2015, 21(1):1-6.
[16] BORN M, WOLF E. Principles of optics:electromagnetic theory of propagation, interference and diffraction of light[M]. Cambridge, U K:Cambridge University Press, 1999:167-175.
[17] MARTINELLI M, GOMES L, HOROWICZ R J. Measurement of refractive nonlinearities in GaAs above bandgap energy[J]. Applied Optics, 2000, 39(33):6193-6196.
[18] XIANG M, JIA Z, LV X. Reflection z-scan for measuring the nonlinear refractive index of porous silicon[J]. Optoelectronics Letters, 2010, 6(3):226-228.
[19] DHEEPA J, SATHYAMOORTHY R, SUBBARAYAN A. Optical properties of thermally evaporated Bi2Te3 thin films[J]. Journal of Crystal Growth, 2005, 274(1):100-105.
[20] CATUNDA T, CURY L A. Transverse self-phase modulation in ruby and GdAlO3:Cr3 crystals[J]. Journal of the Optical Society of America, 1990, B7(8):1445-1455.
[21] HE W Q, GU C M, SHEN W Z. Direct evidence of Kerr-like nonlinearity by femtosecond z-scan technique[J]. Optics Express, 2006, 14(12):5476-5483.
[22] DINU M, QUOCHI F, GARCIA H. Third-order nonlinearities in silicon at telecom wavelengths[J]. Applied Physics Letters, 2003, 82(18):2954-2956.
-
期刊类型引用(5)
1. 王云萍,侯军燕,袁春,康文运,陈安民,张鲁薇. 飞秒激光对多光谱滤波片的损伤阈值研究. 激光技术. 2022(05): 697-701 . 本站查看
2. 周远航,张健,冯爱新,尚大智,陈云,唐杰,杨海华. 皮秒绿激光修锐青铜基金刚石砂轮损伤规律与机制. 中国激光. 2021(06): 197-206 . 百度学术
3. 李玉瑶,王菲,孙同同. 薄膜激光损伤阈值标定技术. 激光技术. 2021(06): 729-734 . 本站查看
4. 付秀华,陈成,胡章贵,熊仕富,张静,王菲,王晨鑫. 278nm全固态激光系统倍频分离膜的研制. 中国激光. 2019(12): 147-155 . 百度学术
5. 董家宁,范杰,王海珠,邹永刚,张家斌,侯春鸽. 高反射光学薄膜激光损伤研究进展. 中国光学. 2018(06): 931-948 . 百度学术
其他类型引用(5)
计量
- 文章访问数: 5
- HTML全文浏览量: 0
- PDF下载量: 9
- 被引次数: 10