[1]
|
MOORE J E. The birth of topological insulators[J]. Nature, 2010, 464(7286):194-198. |
[2]
|
MOORE J. Topological insulators:the next generation[J]. Nature Physics, 2009, 5(6):378-380. |
[3]
|
BERNEVIG B A, HUGHES T L, ZHANG S C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells[J]. Science, 2006, 314(5806):1757-1761. |
[4]
|
ZHANG H, LIU C X, QI X L, et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface[J]. Nature Physics, 2009, 5(6):438-442. |
[5]
|
BONACCORSO F, SUN Z, HASAN T, et al. Graphene photonics and optoelectronics[J]. Nature Photonics, 2010, 4(9):611-622. |
[6]
|
SUN Z, HASAN T, TORRISI F, et al. Graphene mode-locked ultrafast laser[J]. American Chemical Society Nano, 2010, 4(2):803-810. |
[7]
|
ZHENG Z W, ZHAO C J, LU S B, et al. Microwave and optical saturable absorption in graphene[J]. Optics Express, 2012, 20(21):23201-23214. |
[8]
|
ZHANG H, VIRALLY S, BAO Q, et al. z-scan measurement of the nonlinear refractive index of graphene[J]. Optics Letters, 2012, 37(11):1856-1858. |
[9]
|
BERNARD F, ZHANG H, GORZA S P, et al. Towards mode-locked fiber laser using topological insulators[C]//Nonlinear Photonics. Washington DC, USA:The Optical Society of America, 2012:NTh1A.5. |
[10]
|
ZHAO C J, ZOU Y H, CHEN Y, et al. Wavelength-tunable picosecond soliton fiber laser with topological insulator:Bi2Se3 as a mode locker[J]. Optics Express, 2012, 20(25):27888-27895. |
[11]
|
LU S B, ZHAO C J, ZOU Y H, et al. Third order nonlinear optical property of Bi2Se3[J]. Optics Express, 2013, 21(2):2072-2082. |
[12]
|
CHEN S Q, ZHAO C J, LI Y, et al. Broadband optical and microwave nonlinear response in topological insulator[J]. Optical Materials Express, 2014, 4(4):587-596. |
[13]
|
LEE J, KOO J, CHI C, et al. All-fiberized, passively Q-switched 1.06m laser using a bulk-structured Bi2Te3 topological insulator[J]. Journal of Optics, 2014, 16(8):085203. |
[14]
|
KOO J, LEE J, CHI C, et al. Passively Q-switched 1.56m all-fiberized laser based on evanescent field interaction with bulk-structured bismuth telluride topological insulator[J]. Journal of the Optical Society of America, 2014, B31(9):2157-2162. |
[15]
|
LEE J, JUNG M, KOO J, et al. Passively Q-switched 1.89m fiber laser using a bulk-structured Bi2Te3 topological insulator[J]. IEEE Journal of Quantum Electronics, 2015, 21(1):1-6. |
[16]
|
BORN M, WOLF E. Principles of optics:electromagnetic theory of propagation, interference and diffraction of light[M]. Cambridge, U K:Cambridge University Press, 1999:167-175. |
[17]
|
MARTINELLI M, GOMES L, HOROWICZ R J. Measurement of refractive nonlinearities in GaAs above bandgap energy[J]. Applied Optics, 2000, 39(33):6193-6196. |
[18]
|
XIANG M, JIA Z, LV X. Reflection z-scan for measuring the nonlinear refractive index of porous silicon[J]. Optoelectronics Letters, 2010, 6(3):226-228. |
[19]
|
DHEEPA J, SATHYAMOORTHY R, SUBBARAYAN A. Optical properties of thermally evaporated Bi2Te3 thin films[J]. Journal of Crystal Growth, 2005, 274(1):100-105. |
[20]
|
CATUNDA T, CURY L A. Transverse self-phase modulation in ruby and GdAlO3:Cr3 crystals[J]. Journal of the Optical Society of America, 1990, B7(8):1445-1455. |
[21]
|
HE W Q, GU C M, SHEN W Z. Direct evidence of Kerr-like nonlinearity by femtosecond z-scan technique[J]. Optics Express, 2006, 14(12):5476-5483. |
[22]
|
DINU M, QUOCHI F, GARCIA H. Third-order nonlinearities in silicon at telecom wavelengths[J]. Applied Physics Letters, 2003, 82(18):2954-2956. |