高级检索

双路信号相位同步测量系统设计与实现

Design and implement of a synchronous phase measurement system for dual-channel signals

  • 摘要: 为了实现2维外差干涉位移测量中信号相位的精确同步探测,采用整周期计数与脉冲填充相结合的方法,利用同一时钟基准,对双路信号进行同步检测与并行处理,设计并实现了一种基于现场可编程门阵列的双路外差干涉信号相位同步测量系统。该系统在100kHz载波频率下测量分辨率可以达到0.18,双路信号下的相位同步测量误差同样为0.18。结果表明,该系统实现了整小数相位的精确测量,确保了双路信号相位的实时同步探测,能够满足各种2维外差干涉位移测量系统对相位同步测量的需求。

     

    Abstract: In order to realize precise synchronization detection of signal phase for 2-D heterodyne interference displacement measurement, based on the combination of the whole cycle counting and the pulse stuffing methods, a dual-channel synchronous heterodyne signal phase measurement system based on field programmable gate array was designed and implemented by utilizing the same clock reference to detect synchronously and process the dual-channel signals parallelly. The results demonstrate that the resolution of 0.18 is realized with carrier frequency of 100kHz, and the phase synchronization measurement error of 0.18 is achieved for dual-channel signal detection. Accurate measurement of integral and fractional phases was realized by the system. Meanwhile, the real-time synchronous measurement of dual-channel signal phase was then guaranteed. It indicates that the developed system can fulfill the requirement of various 2-D heterodyne interference displacement measurement applications.

     

/

返回文章
返回