高级检索

双路信号相位同步测量系统设计与实现

杜志广, 颜树华, 林存宝, 王国超, 魏春华

杜志广, 颜树华, 林存宝, 王国超, 魏春华. 双路信号相位同步测量系统设计与实现[J]. 激光技术, 2016, 40(3): 315-319. DOI: 10.7510/jgjs.issn.1001-3806.2016.03.003
引用本文: 杜志广, 颜树华, 林存宝, 王国超, 魏春华. 双路信号相位同步测量系统设计与实现[J]. 激光技术, 2016, 40(3): 315-319. DOI: 10.7510/jgjs.issn.1001-3806.2016.03.003
DU Zhiguang, YAN Shuhua, LIN Cunbao, WANG Guochao, WEI Chunhua. Design and implement of a synchronous phase measurement system for dual-channel signals[J]. LASER TECHNOLOGY, 2016, 40(3): 315-319. DOI: 10.7510/jgjs.issn.1001-3806.2016.03.003
Citation: DU Zhiguang, YAN Shuhua, LIN Cunbao, WANG Guochao, WEI Chunhua. Design and implement of a synchronous phase measurement system for dual-channel signals[J]. LASER TECHNOLOGY, 2016, 40(3): 315-319. DOI: 10.7510/jgjs.issn.1001-3806.2016.03.003

双路信号相位同步测量系统设计与实现

基金项目: 

国家自然科学基金资助项目(51275523)

详细信息
    作者简介:

    杜志广(1991-),男,硕士研究生,主要从事光学精密测量与信号处理方面的研究。

    通讯作者:

    颜树华,E-mail:yanshuhua996@163.com

  • 中图分类号: TH744.3

Design and implement of a synchronous phase measurement system for dual-channel signals

  • 摘要: 为了实现2维外差干涉位移测量中信号相位的精确同步探测,采用整周期计数与脉冲填充相结合的方法,利用同一时钟基准,对双路信号进行同步检测与并行处理,设计并实现了一种基于现场可编程门阵列的双路外差干涉信号相位同步测量系统。该系统在100kHz载波频率下测量分辨率可以达到0.18,双路信号下的相位同步测量误差同样为0.18。结果表明,该系统实现了整小数相位的精确测量,确保了双路信号相位的实时同步探测,能够满足各种2维外差干涉位移测量系统对相位同步测量的需求。
    Abstract: In order to realize precise synchronization detection of signal phase for 2-D heterodyne interference displacement measurement, based on the combination of the whole cycle counting and the pulse stuffing methods, a dual-channel synchronous heterodyne signal phase measurement system based on field programmable gate array was designed and implemented by utilizing the same clock reference to detect synchronously and process the dual-channel signals parallelly. The results demonstrate that the resolution of 0.18 is realized with carrier frequency of 100kHz, and the phase synchronization measurement error of 0.18 is achieved for dual-channel signal detection. Accurate measurement of integral and fractional phases was realized by the system. Meanwhile, the real-time synchronous measurement of dual-channel signal phase was then guaranteed. It indicates that the developed system can fulfill the requirement of various 2-D heterodyne interference displacement measurement applications.
  • [1]

    ZHANG E Z, HAO Q, CHEN B Y, et al. Laser heterodyne interferometer for simultaneous measuring displacement and angle based on the Faraday effect[J]. Optics Express, 2014, 22(21):25587-25598.

    [2]

    WU C C, HSU C C, LEE J Y, et al. Heterodyne common-path grating interferometer with Littrow configuration[J]. Optics Express, 2013, 21(11):13322-13332.

    [3]

    CHEN B Y, YAN L P, YANG T, et al. Development of a laser synthetic wavelength interferometer for large displacement measurement with nanometer accuracy[J]. Optics Express, 2010, 18(3):3000-3010.

    [4]

    JIAN P, PINEL O, FABRE C, et al. Real-time displacement measurement immune from atmospheric parameters using optical frequency combs[J]. Optics Express, 2012, 20(24):27133-27146.

    [5]

    HORESTANI A K, NAQUI J, SHATERIAN Z, et al. Two-dimensional alignment and displacement sensor based on movable broadside-coupled split ring resonators[J]. Sensors and Actuators, 2014, A210(1):18-24.

    [6]

    HSIEH H L, PAN S W. Three-degree-of-freedom displacement measurement using grating-based heterodyne interferometry[J]. Applied Optics,2013, 52(27):6840-6848.

    [7]

    HSIEH H L, CHEN J C, LERONDEL D. Two-dimensional displacement measurement by quasi-common-optical-path heterodyne grating interferometer[J]. Optics Express, 2011, 19(10):9770-9782.

    [8]

    HSU C C, WU C C, LEE J Y, et al. Reflection type heterodyne grating interferometry for in-plane displacement measurement[J]. Optics Communications, 2008, 281(1):2582-2589.

    [9]

    LI S D, ZHANG X L, TAO H, et al. Hardware design and realization of 3D grating displacement measurement system[J]. Transducer and Microsystem Technologies, 2013, 32(5):124-127 (in Chinese).

    [10]

    LIN C B, YAN S H, DU Zh G, et al. High-efficiency gold-coated cross-grating for heterodyne grating interferometer with improved signal contrast and optical subdivision[J]. Optics Communications, 2015, 339(15):86-93.

    [11]

    SHI Y, JU A S, LE Y F. Heterodyne interference signal processing method based on FPGA[J]. Laser Technology, 2012, 36(2):225-227 (in Chinese).

    [12]

    QIU X Q, LE Y F, WANG J. Interpolation of heterodyne interferometric signals based on FPGA[J]. Laser Technology, 2011, 35(2):199-205 (in Chinese).

    [13]

    LE Y F, LI X X, JU A S. Design of phase comparator in a laser heterodyne interferometer[J]. Laser Technology, 2014, 38(1):119-123 (in Chinese).

    [14]

    YANG D X, YAN S H, DU L B, et al. Design of a miniature single-grating displacement measuring system with nanometer resolution[J]. Infrared and Laser Engineering, 2013, 42(4):1020-1025 (in Chinese).

    [15]

    WANG H, ZHOU W, LI Z Q. Frequency measurement method based on delay chain[J]. Chinese Journal of Scientific Instrument, 2008, 29(3):320-323 (in Chinese).

计量
  • 文章访问数:  5
  • HTML全文浏览量:  0
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-22
  • 修回日期:  2015-05-12
  • 发布日期:  2016-05-24

目录

    /

    返回文章
    返回