高级检索

光强控制非线性布喇格光纤光栅慢光特性研究

陈建军, 李林福

陈建军, 李林福. 光强控制非线性布喇格光纤光栅慢光特性研究[J]. 激光技术, 2015, 39(2): 224-227. DOI: 10.7510/jgjs.issn.1001-3806.2015.02.017
引用本文: 陈建军, 李林福. 光强控制非线性布喇格光纤光栅慢光特性研究[J]. 激光技术, 2015, 39(2): 224-227. DOI: 10.7510/jgjs.issn.1001-3806.2015.02.017
CHEN Jianjun, LI Linfu. Investigation on the slow-light characteristics of nonlinear Bragg gratings based on optical power control[J]. LASER TECHNOLOGY, 2015, 39(2): 224-227. DOI: 10.7510/jgjs.issn.1001-3806.2015.02.017
Citation: CHEN Jianjun, LI Linfu. Investigation on the slow-light characteristics of nonlinear Bragg gratings based on optical power control[J]. LASER TECHNOLOGY, 2015, 39(2): 224-227. DOI: 10.7510/jgjs.issn.1001-3806.2015.02.017

光强控制非线性布喇格光纤光栅慢光特性研究

基金项目: 

贵州省科学技术基金资助项目(黔科合J字LKM23号)

详细信息
    作者简介:

    陈建军(1977-),男,讲师,硕士,主要从事激光技术与光纤传感等方面的研究。

    通讯作者:

    李林福。E-mail:fulin369@126.com

  • 中图分类号: TN253

Investigation on the slow-light characteristics of nonlinear Bragg gratings based on optical power control

  • 摘要: 为了在光纤通信网络中控制光的传播速度以实现全光路由及全光缓存,构建了耦合模传输模型,采用含时推移变量的传输矩阵方法,数值研究了光强控制下非线性布喇格光纤光栅(NLBG)的慢光特性。结果表明,NLBG禁带位置具有强烈的光强依赖性,入射光强的变化能够有效改变光的传输群速度,对于输出脉冲未展宽的情况,普遍可以得到100ps以上的输出脉冲时延,且当入射光强一定时,NLBG的长度变化对光的传播群速度也有显著的影响。
    Abstract: To control the speed of light to achieve all-optical router and all-optical buffer in optical fiber communication network, the transmission model of coupled mode is constructed. By utilizing the modified time-domain transfer matrix method, the slow-light characteristics of nonlinear fiber Bragg gratings(NLBG) have been studied numerically based on optical power control. The results show that the photonic stopgap critically depends on the power of light and the variation of input power can effectively change the group velocity of light. Considering the case that the output pulse is not broadened, slow-light systems can generally obtain an output pulse delay time beyond 100ps. Furthermore, for the fixed input power, changing the length of NLBG can observably influence the group velocity of light.
  • [1]

    DAHAN D, EISENSTEIN G. Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering[J]. Optics Express, 2005, 13(16): 6234-6249.

    [2]

    DAI L, LI T, JING C. Wideband ultralow high-order-dispersion photonic crystal slow-light waveguide[J]. Journal of the Optical Society of America, 2011, B28(7): 1622-1626.

    [3]

    KURT H, ERIM N, USTUN K. Slow light based on optical surface modes of two-dimensional photonic crystals[J]. Journal of the Optical Society of America, 2012, B29(6): 1187-1193.

    [4]

    VARMAZYARI V, HABIBIYAN H, GHAFOORIFARD H. All-optical tunable slow light achievement in photonic crystal coupled-cavity waveguides[J]. Applied Optics, 2013, 52(26): 6497-6505.

    [5]

    MUN~OZ M C, PETROV A Y, O'FAOLAIN L, et al. Optically induced indirect photonic transitions in a slow light photonic crystal waveguide[J]. Physical Review Letters, 2014, 112(5): 053904.

    [6]

    WU J W, LUO F G. Slow light transmission of low power signal optical pulse in uniform periodic structure[J]. Laser Technology, 2007, 31(6):593-599 (in Chinese).

    [7]

    SENTHILNATHAN K, RAMESH BABU P, PORSEZIAN K, et al. Grating solitons near the photonic bandgap of a fiber Bragg grating[J]. Chaos, Solitons & Fractals, 2007, 33(2): 523-531.

    [8]

    QI Y F, HOU C L, BI W H. Theoretical and experimental research on fiber Bragg gratings in grapefruit photonic crystal fibers[J]. Chinese Journal of Lasers, 2012, 39(2): 0205004 (in Chinese).

    [9]

    CHEN J J, MURAT H, HU Y T. Theoretical investigation on bistable switching and dynamic characteristics of tapered nonlinear Bragg gratings[J]. Laser & Optoelectronics Progress, 2011(1): 010606 (in Chinese).

    [10]

    LENZ G, EGGLETON B J, MADSEN C K, et al. Optical delay lines based on optical filters[J]. IEEE Journal of Quantum Electronics, 2001, 37(4): 525-530.

    [11]

    MOK J T, de STERKE C M, EGGLETON B J. Delay-tunable gap-soliton-based slow-light system[J]. Optics Express, 2006, 14(25): 11987-11996.

    [12]

    MOK J T, IBSEN M, de STERKE C M, et al. Dispersionless slow light with 5-pulse-width delay in fibre Bragg grating[J]. Electronics Letters, 2007, 43(25): 1418-1419.

    [13]

    HOPMAN W C L, HOEKSTRA H, DEKKER R, et al. Far-field scattering microscopy applied to analysis of slow light, power enhancement, and delay times in uniform Bragg waveguide gratings[J]. Optics Express, 2007, 15(4): 1851-1870.

    [14]

    LIU H C, YARIV A. Grating induced transparency (GIT) and the dark mode in optical waveguides[J]. Optics Express, 2009, 17(14): 11710-11718.

    [15]

    QIAN K, ZHAN L, LI H, et al. Tunable delay slow-light in an active fiber Bragg grating[J]. Optics Express, 2009, 17(24): 22217-22222.

    [16]

    EGGLETON B J, LENZ G, LITCHINITSER N M. Optical pulse compression schemes that use nonlinear pulse compression in Bragg gratings[J]. Fiber & Integrated Optics, 2000, 19(4): 383-421.

    [17]

    KIM B S, CHUNG Y, LEE J S. An efficient split-step time-domain dynamic modeling of DFB/DBR laser diodes[J]. IEEE Journal of Quantum Electronics, 2000, 36(7): 787-794.

    [18]

    MAITRA A, POULTON C G, WANG J, et al. Low switching threshold using nonlinearities in stopband-tapered waveguide Bragg gratings[J]. IEEE Journal of Quantum Electronics, 2005, 41(10): 1303-1308.

计量
  • 文章访问数:  5
  • HTML全文浏览量:  0
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-23
  • 修回日期:  2014-04-29
  • 发布日期:  2015-03-24

目录

    /

    返回文章
    返回