高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

抛物线坐标系非傍轴矢量光束的解及聚焦特性

彭继 崔执凤 屈军

引用本文:
Citation:

抛物线坐标系非傍轴矢量光束的解及聚焦特性

    作者简介: 彭继 (1987-),男,硕士研究生,主要从事激光大气传输与光束质量的研究。.
    通讯作者: 屈军, qujun70@mail.ahnu.edu.cn
  • 基金项目:

    国家自然科学基金资助项目(11374015)

  • 中图分类号: O432

Solution and focus property of the nonparaxial vector beams in the parabolic coordinates

    Corresponding author: QU Jun, qujun70@mail.ahnu.edu.cn
  • CLC number: O432

  • 摘要: 为了求解柱坐标系下非傍轴矢量波动方程,得到光束的电场解析表达式,基于轴对称情况下沿角向偏振的电场,将非傍轴近似情况下的矢量波动方程进行了抛物线坐标的转化,利用分离变量法进行了相应求解,并给出了相应的数值计算。结果表明,非傍轴近似情况下,矢量波动方程的解能描述一种光束的电场,该场的解析表达式与合流超几何函数以及梅杰函数的解有关;光束的光强分布与第1类零阶贝塞尔模式光束类似;光束在近光轴处的光强表现为无限大并且沿边缘方向急剧衰减;在焦平面上沿着径向方向光强急剧减小。所得结果对于探究非傍轴近似情况下矢量光束的传输特性有一定的意义。
  • [1]

    HAYAZAWA N, SAITO Y, KAWATA S. Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy[J]. Applied Physics Letters, 2004, 85(25): 6239-6241.
    [2]

    ZHANG Zh H, LI Ch G, LI J Zh, et al. Phase compensation in lensless Fourier transform digital holography [J]. Laser Technology, 2013, 37(5): 569-600(in Chinese).
    [3]

    ZHAN Q W. Trapping metallic Rayleigh particles with radial polarization[J]. Optics Express, 2004, 12(15): 3377-3382.
    [4]

    MASAKI M, TERUTAKE H, YASUHIRO T. Measurement of axial and transverse trapping stiffness of optical tweezers in air using a radially polarized beam[J]. Applied Optics, 2009, 48(32): 6143-6151.
    [5]

    SILER M, JAKL P, BRZOBOHATY O, et al. Optical forces induced behavior of a particle in a non-diffracting vortex beam[J]. Optics Express, 2012, 20(22): 24304-24319.
    [6]

    ZHOU P, MA Y X, WANG X L, et al. Average intensity of a partially coherent rectangular flat-topped laser array propagating in a turbulent atmosphere[J]. Applied Optics, 2009, 48(28): 5251-5258.
    [7]

    GE X L, FENG X X, FAN Ch Y. Progress of the study of phase discontinuity of laser propagation through atmosphere[J]. Laser Technology, 2012, 36(4): 485-489(in Chinese).
    [8]

    ZHOU P, LIU Z J, XU X J, et al. Propagation of phase-locked partially coherent flattened beam array in turbulent atmosphere[J]. Optics and Lasers in Engineering, 2009, 47(11): 1254-1258.
    [9]

    ZHU Zh W, SU Zh P. Spectral change of J0-correlated partially coherent flat-topped beam in turbulent atmosphere[J]. Laser Technology, 2012, 36(4): 532-535(in Chinese).
    [10]

    XU H F, CUI Zh F, QU J. Propagation of elegant Laguerre-Gaussian beam in non-Kolmogorov turbulence[J]. Optics Express, 2011, 19(22): 21163-21173.
    [11]

    WANG L, SHEN X J, ZHANG W A, et al. Analysis of spectral propagating properties of Gaussian beam[J]. Laser Technology, 2012, 36(5): 700-703(in Chinese).
    [12]

    XU H F, LUO H, CUI Zh F, et al. Polarization characteristics of partially coherent elegant Laguerre-Gaussian beams in non-Kolmogorov turbulence[J]. Optics and Lasers in Engineering, 2012, 50(5): 760-766.
    [13]

    WANG B, FEI J Ch, CUI Zh F, et al. Reserch of degree of polarization of PCELG beam propagating through a circular aperture[J].Laser Technology, 2013, 37(5): 672-678(in Chinese).
    [14]

    BARREIRO J T, WEI T Ch, KWIAT P G. Remote preparation of single-photon "Hybrid" entangled and vector-polarization states[J]. Physical Review Letters, 2010, 105(3): 030407.
    [15]

    LI X P, CAO Y Y, GU M. Superresolution-focal-volume induced 3.0Tbytes/disk capacity by focusing a radially polarized beam[J]. Optics Letters, 2011, 36(13): 2510-2512.
    [16]

    ZHAN Q W. Cylindrical vector beams: from mathematical concepts to applications[J]. Advances in Optics and Photonics, 2009, 1(1): 1-57.
    [17]

    MIGUEL A B, JULIO C G V, SABINO Ch C. Parabolic nondiffracting optical wave fields[J]. Optics Letters, 2004, 29(1): 44-46.
    [18]

    BORN M, WOLF E. Principles of optics [M]. 7th ed. Cambridgeshire,United Kingdom: Cambridge University Press, 1999: 11-19.
    [19]

    DURNIN J, MICELI J J, EBERLY J H. Diffraction-free beams[J]. Physical Review Letters, 1987, 58(15): 1499-1501.
    [20]

    KHONINA S N, KOTLYAR V V, SKIDANOV R V, et al. Rotation of microparticles with Bessel beams generated by diffractive elements[J]. Journal of Modern Optics, 2004, 51(14): 2167-2184.
    [21]

    GUTIERREZ-VEGA J C, ITURBE-CASTILLO M D, CHAVEZ-CERDA S. Alternative formulation for invariant optical fields: Mathieu beams[J]. Optics Letters, 2000, 25(20): 1493-1495.
    [22]

    KOGELNIK H, LI T. Laser beams and resonators[J]. Proceedings of the IEEE, 1966, 54(10): 1312-1329.
    [23]

    DUAN K L, LV B D. Application of the Wigner distribution function to complex-argument Hermite- and Laguerre-Gaussian beams beyond the paraxial approximation[J]. Optics & Laser Technology, 2007, 39(1): 110-115.
    [24]

    SESHADRI S R. Self-interaction and mutual interaction of complex-argument Laguerre-Gauss beams[J]. Optics Letters, 2006, 31(5): 619-621.
    [25]

    KOSTENBAUDER A, SUN Y, SIEGMAN A E. Eigenmode expansions using biorthogonal functions: complex-valued Hermite-Gaussians: reply to comment[J]. Journal of the Optical Society of America, 2006,A23(6):1528-1529.
    [26]

    HALL D G. Vector-beam solutions of Maxwell’s wave equation[J]. Optics Letters, 1996, 21(1): 9-11.
    [27]

    XIN J T, GAO Ch Q, LI Ch. Combination of Hermit-Gaussian beams to arbitery order vector beams[J]. Scientia Sinica Physica Mechanica & Astronomica, 2012, 42(10): 1017-1021(in Chinese).
    [28]

    LIM B C, PHUA P B, LAI W J, et al. Fast switchable electro-optic radial polarization retarder[J]. Optics Letters, 2008, 33(9): 950-952.
    [29]

    TIDWELL S C, DENNIS H F, WAYNE D K. Generating radially polarized beams interferometrically[J]. Applied Optics, 1990, 29(15): 2234-2239.
    [30]

    MAURER C, JESACHER A, FURHAPTER S, et al. Tailoring of arbitrary optical vector beams[J]. New Journal of Physics, 2007, 9(3): 78.
    [31]

    WANG X L, DING J P, NI W J, et al. Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement[J]. Optics Letters,2007,32(24):3549-3551.
    [32]

    KOTLYAR V V, SKIDANOV R V, KHONINA S N, et al. Hypergeometric modes[J]. Optics Letters, 2007, 32(7): 742-744.
    [33]

    KARIMI E,ZITO G, PICCIRILLO B, et al. Hypergeometric-Gaussian modes[J]. Optics Letters, 2007, 32(21): 3053-3055.
    [34]

    KOTIYAR V V, KOVALEV A A, SOIFER V A. Hankel-Bessel laser beams[J]. Journal of the Optical Society of America, 2012,A29(5):741-747.
    [35]

    ABRAMOWITZ M, STEGUN I. Handbook of mathematical functions[M]. 9th ed. New York,USA:Dover Publishing Inc, 1970: 504-510.
  • [1] 薛灏张全李鹏 . 半导体激光器远场光强特性分析. 激光技术, 2004, 28(6): 661-663.
    [2] 李策刘俊伟赵培娥周杰谢日华罗雄周鼎富 . 机动型激光测风雷达倾斜风场修正算法研究. 激光技术, 2017, 41(3): 385-390. doi: 10.7510/jgjs.issn.1001-3806.2017.03.016
    [3] 叶森龙云王如泉曹强肖三强赵宏鸣杜渐 . 一种优化超稳光学腔的数值方法. 激光技术, 2016, 40(6): 871-875. doi: 10.7510/jgjs.issn.1001-3806.2016.06.020
    [4] 贺也洹张恩华王志海李慧剑李彬陈翔袁佳叶大华 . 光纤激光非相干合成效果分析. 激光技术, 2019, 43(6): 829-833. doi: 10.7510/jgjs.issn.1001-3806.2019.06.018
    [5] 刘航冯立强 . 利用非均匀抽运探测激光增强阿秒脉冲强度. 激光技术, 2019, 43(1): 53-57. doi: 10.7510/jgjs.issn.1001-3806.2019.01.011
    [6] 黄沛曹建林宋宁 . 光纤布喇格光栅动态响应特性的计算和分析. 激光技术, 2008, 32(6): 651-654.
    [7] 张建强张亚萍吴上陈伟王鹏 . 计算全息快速获得不同形式再现像的研究. 激光技术, 2013, 37(1): 40-43. doi: 10.7510/jgjs.issn.1001-3806.2013.01.010
    [8] 康小平吕百达 . 非傍轴高斯光束通过小孔光阑衍射的轴上光强. 激光技术, 2006, 30(3): 332-333,336.
    [9] 李平邝爱华 . 非傍轴部分相干厄米-余弦-高斯光束传输特性. 激光技术, 2014, 38(1): 141-144. doi: 10.7510/jgjs.issn.1001-3806.2014.01.031
    [10] 康小平吕百达 . 非傍轴旋转对称拉盖尔-高斯光束的远场发散角. 激光技术, 2006, 30(2): 181-182,185.
    [11] 吴超唐霞辉李根王炜王振 . 负支离轴共焦非稳腔过量噪声的研究. 激光技术, 2016, 40(6): 882-887. doi: 10.7510/jgjs.issn.1001-3806.2016.06.022
    [12] 冯立强刘航刘辉 . 空间均匀和非均匀场下H2+辐射谐波的空间分布. 激光技术, 2017, 41(4): 467-472. doi: 10.7510/jgjs.issn.1001-3806.2017.04.002
    [13] 陈海涛李婷高曾辉 . 非相干叠加光束携带C点偶极子的演化特性. 激光技术, 2022, 46(5): 691-696. doi: 10.7510/jgjs.issn.1001-3806.2022.05.019
    [14] 高胜淼闫珂柱韩培高许春玉王荣新 . 飞秒激光诱导硅材料表面周期结构的研究. 激光技术, 2015, 39(3): 395-398. doi: 10.7510/jgjs.issn.1001-3806.2015.03.025
    [15] 李蕾臧景峰 . 双狭缝扫描法测量激光光束质量. 激光技术, 2015, 39(6): 845-849. doi: 10.7510/jgjs.issn.1001-3806.2015.06.024
    [16] 郑晖林季鹏史斐戴殊韬江雄康治军翁文林文雄 . 倍频过程对激光光束质量及空间分布的影响. 激光技术, 2009, 33(1): 67-70.
    [17] 骆永全张大勇张翠娟罗飞沈志学刘海涛 . 液晶光学器件激光损伤研究. 激光技术, 2010, 34(3): 392-394. doi: 10.3969/j.issn.1001-3806.2010.03.030
    [18] 刘伟孟冬冬范彩连李品蔡野伍彦伟刘会霞 . 激光透射焊接尼龙66光学属性研究. 激光技术, 2016, 40(5): 716-721. doi: 10.7510/jgjs.issn.1001-3806.2016.05.020
    [19] 张靳黄磊王东生殷聪巩马理 . 光学组合半导体激光器输出光束特性研究. 激光技术, 2007, 31(3): 228-231,241.
    [20] 王天明李斌成赵斌兴孙启明 . 高功率激光作用下光学元件非线性热效应研究. 激光技术, 2022, 46(6): 729-735. doi: 10.7510/jgjs.issn.1001-3806.2022.06.003
  • 加载中
计量
  • 文章访问数:  3830
  • HTML全文浏览量:  1126
  • PDF下载量:  687
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-11
  • 录用日期:  2013-11-13
  • 刊出日期:  2014-09-25

抛物线坐标系非傍轴矢量光束的解及聚焦特性

    通讯作者: 屈军, qujun70@mail.ahnu.edu.cn
    作者简介: 彭继 (1987-),男,硕士研究生,主要从事激光大气传输与光束质量的研究。
  • 1. 安徽师范大学 物理与电子信息学院, 芜湖 241000
基金项目:  国家自然科学基金资助项目(11374015)

摘要: 为了求解柱坐标系下非傍轴矢量波动方程,得到光束的电场解析表达式,基于轴对称情况下沿角向偏振的电场,将非傍轴近似情况下的矢量波动方程进行了抛物线坐标的转化,利用分离变量法进行了相应求解,并给出了相应的数值计算。结果表明,非傍轴近似情况下,矢量波动方程的解能描述一种光束的电场,该场的解析表达式与合流超几何函数以及梅杰函数的解有关;光束的光强分布与第1类零阶贝塞尔模式光束类似;光束在近光轴处的光强表现为无限大并且沿边缘方向急剧衰减;在焦平面上沿着径向方向光强急剧减小。所得结果对于探究非傍轴近似情况下矢量光束的传输特性有一定的意义。

English Abstract

参考文献 (35)

目录

    /

    返回文章
    返回