高级检索

基于残差偏置和查找表的高光谱图像无损压缩

何艳坤, 白玉杰

何艳坤, 白玉杰. 基于残差偏置和查找表的高光谱图像无损压缩[J]. 激光技术, 2014, 38(5): 643-646. DOI: 10.7510/jgjs.issn.1001-3806.2014.05.014
引用本文: 何艳坤, 白玉杰. 基于残差偏置和查找表的高光谱图像无损压缩[J]. 激光技术, 2014, 38(5): 643-646. DOI: 10.7510/jgjs.issn.1001-3806.2014.05.014
HE Yankun, BAI Yujie. Lossless compression of hyperspectral images based on lookup table and residual offset[J]. LASER TECHNOLOGY, 2014, 38(5): 643-646. DOI: 10.7510/jgjs.issn.1001-3806.2014.05.014
Citation: HE Yankun, BAI Yujie. Lossless compression of hyperspectral images based on lookup table and residual offset[J]. LASER TECHNOLOGY, 2014, 38(5): 643-646. DOI: 10.7510/jgjs.issn.1001-3806.2014.05.014

基于残差偏置和查找表的高光谱图像无损压缩

基金项目: 

国家自然科学基金资助项目(61171154)

详细信息
    作者简介:

    何艳坤(1991-),女,硕士研究生,主要研究方向为高光谱预测、图像与信息处理。E-mail:987738409@qq.com

  • 中图分类号: TP751.1

Lossless compression of hyperspectral images based on lookup table and residual offset

  • 摘要: 为了提高高光谱遥感图像的压缩比,提出一种基于残差偏置和查找表的高光谱图像无损压缩方法。在高光谱图像的第一谱段图像采用了无损压缩标准中值预测器方法进行谱段内预测,其它谱段图像采用谱间预测方法。首先,在多级查找表(LAIS-LUT)预测方法的基础上搜索当前预测值,用当前预测值周围特定的5个像素点和当前像素值周围相同位置的5个像素点进行比较,通过比较结果,得出一个偏置值;然后在预测残差上加上偏置值;最后,将最终预测残差进行算术编码,并进行了理论分析和实验验证。结果表明,针对美国航空航天局的高光谱图像,所提出的方法比LAIS-LUT压缩比平均提高0.05;针对国内高光谱图像,该方法比LAIS-LUT压缩比平均提高0.07。这一结果对提高高光谱图像压缩效率是有帮助的。
    Abstract: In order to improve the compression ratio of the hyperspectral remote sensing images, a new lookup table(LUT) prediction method was proposed based on residual offset. In the first spectral band of the hyperspectral images, the prediction was conducted within the spectral band by the median prediction method of lossless compression standard. In other spectral bands, the prediction was conducted between the spectral bands. Firstly, the current prediction value was found through locally averaged interband scaling lookup table (LAIS-LUT) prediction method. Then, the specific five pixels around the current prediction value were compared with the corresponding five pixels around the current value. After the comparison, the offset was obtained. The offset was added to the prediction residual error. Finally, the prediction residual error will be coded with algorithm coding. Theoretical analysis and experimental verification show that the lossless compression ratio of the proposed method is increased by about 0.05 in National Aeronautics and Space Administration data and by about 0.07 in Chinese data. This result is helpful to improve the compression efficiency of hyperspectral images.
  • [1]

    CHEN Y H,SHI Z L,ZHAO H C,et al.Spatial-spectral associated predictiorrbased rice algorithm for hyperspectral image lossless compression[J]. Chinese Journal of Scientific Instrument, 2010,31(1):105-110(in Chinese).

    [2]

    CHANG J,TAO W Sh,NI A, et al. Lossless compression for hyperspectral images based on bi-direction prediction[J]. Electronics Optics & Control, 2010, 17(10):65-68(in Chinese).

    [3]

    JARNO M,PEKKA T. Lossless compression of hyperspectral images using a quantized index to lookup tables[J].IEEE Transactions on Geoscience and Remote Sensing Letters,2008,5(3):471-478.

    [4]

    SONG J,WU Ch K, ZHANG J.Lossless compression of hyperspectral images based on classification and coset coding[J].Journal of Electronics & Information Technology,2011,33(1): 231-234(in Chinese).

    [5]

    ARNO M N, HUANG B. Lossless compression of hyperspectral images using clustered linear predictionwith adaptive prediction length[J]. IEEE Geoscience and Remote Sensing Letters,2012,9(6): 1118-1121.

    [6]

    DUTRA A J S, PEARLMAN W A, SILIA E A B. Successive approximation wavelet coding of AVIRIS hyperspectral images[J] . IEEE Journal of Selected Topics Signal Processing,2011,5(3): 370-385.

    [7]

    ZHOU H,DUAN Y P, WANG J P. Project design for optical image lossless compression technique in range[J].Laser Technology, 2008,32(2):222-228( in Chinese)

    [8]

    WU X L,MEMON N.Context based lossless interband compression-extending CALIC[J].IEEE Transactions on Image Processing,2000,9(6):994-1001.

    [9]

    YAO L H, SHAO X D,LIU J X, et al.Application of symmetry method in code recognition of laser guidance signal[J].Laser Technology, 2013,37(6):791-794(in Chinese).

    [10]

    MAGL E,OLMO G,QUACCHIO E. Optimized onboard lossless and near-lossless compression of hyperspectral data using CALIC [J]. IEEE Geoscience and Remote Sensing Letters,2004,1(1): 21-25.

    [11]

    MIELIKAINEN J. Lossless compression of hyperspectral images using lookup tables[J] . IEEE Transactions on Signal Processing Letters, 2006, 13(3):157-160.

    [12]

    HUANG B, SIRRAJA Y. Lossless compression of hyperspectral imagery via lookup tables with predictor selection[J].Proceedings of the SPIE,2006,6365:63650l.

    [13] LV Z M,LI J. lossless compression of hyperspectral images based on two-way lookup table prediction[J].Journal of Optoelectronics稬aser,2012,23(10):2027-2033(in Chinese).
    [14]

    LI J,JIN X L,LI G N.Lossless compression of hyperspectral image for space-borne application [J].Spectroscopy and Spectral Analysis,2012,33(8):2264-2269(in Chinese).

计量
  • 文章访问数:  2
  • HTML全文浏览量:  0
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-10
  • 修回日期:  2014-01-06
  • 发布日期:  2014-09-24

目录

    /

    返回文章
    返回