高级检索

ArF准分子激光对氟化物高反射薄膜的诱导损伤

常艳贺, 金春水, 李春, 邓文渊, 靳京城

常艳贺, 金春水, 李春, 邓文渊, 靳京城. ArF准分子激光对氟化物高反射薄膜的诱导损伤[J]. 激光技术, 2014, 38(3): 302-306. DOI: 10.7510/jgjs.issn.1001-3806.2014.03.004
引用本文: 常艳贺, 金春水, 李春, 邓文渊, 靳京城. ArF准分子激光对氟化物高反射薄膜的诱导损伤[J]. 激光技术, 2014, 38(3): 302-306. DOI: 10.7510/jgjs.issn.1001-3806.2014.03.004
GHANG Yanhe, JIN Chunshui, LI Chun, DENG Wenyuan, JIN Jingcheng. ArF excimer laser induced damage on high reflective fluoride film[J]. LASER TECHNOLOGY, 2014, 38(3): 302-306. DOI: 10.7510/jgjs.issn.1001-3806.2014.03.004
Citation: GHANG Yanhe, JIN Chunshui, LI Chun, DENG Wenyuan, JIN Jingcheng. ArF excimer laser induced damage on high reflective fluoride film[J]. LASER TECHNOLOGY, 2014, 38(3): 302-306. DOI: 10.7510/jgjs.issn.1001-3806.2014.03.004

ArF准分子激光对氟化物高反射薄膜的诱导损伤

基金项目: 

国家自然科学基金资助项目(61178020)

详细信息
    作者简介:

    常艳贺(1982-),男,博士研究生,主要从事深紫外光学薄膜制备与表征技术方面的研究。

    通讯作者:

    金春水,E-mail:jincs@sklao.ac.cn

  • 中图分类号: O484

ArF excimer laser induced damage on high reflective fluoride film

  • 摘要: 为了研究特定模式下氟化物高反射薄膜的损伤机理,采用相衬微分干涉显微镜、原子力显微镜和台阶仪对不同工艺条件下制备薄膜的损伤区域逐步进行对比分析,在薄膜沉积温度增加后,随着薄膜体内聚集密度的增加,薄膜激光损伤阈值有所提升;对于规整膜系,体内驻波电场强度分布对薄膜损伤也有较大影响。结果表明,根据薄膜损伤形貌和损伤深度综合推断,制备的高反射薄膜损伤是由薄膜体内的聚集密度和电场强度分布所共同引起。该实验结果为下一步继续研究高性能激光反射薄膜打下了基础。
    Abstract: In order to study the damage mechanism of high reflective fluoride film under a certain condition, the damaged areas of the films made with the different processing techniques were analyzed by means of differential interference contrast microscopy, atomic force microscopy and optical profiler. With the increase of the film deposition temperature and the packing density of the film in vivo, laser induced damage threshold of film is improved. For the regular film series, a standing wave electric field intensity distribution of the standing wave in vivo has the greater impact on the film damage. The results show that the damage of high-reflection film is jointly caused by packing density of the film in vivo and electric field intensity distribution based on the damage morphology and damage depth of the film. The results provide the foundation for further research of high quality of laser reflective coatings.
  • [1]

    YU Y S, YOU L B, LIANG X,et al. Progress of excimer lasers technology [J]. Chinese Journal of Lasers, 2010, 37(9): 2253-2270(in Chinese).

    [2]

    ULLMANN J, MERTIN M, ZEISS C, et al. Coated optics for DUV-excimer laser applications [J].Proceedings of SPIE, 2000, 3902: 514-527.

    [3]

    THIELSCH R, HEBER J, KAISER N. Critical issues on the assessment of laser induced damage thresholds of fluoride multilayer coatings at 193nm[J].Proceedings of SPIE, 2000, 3902: 224-234.

    [4]

    LAUX S, BERNITZKI H, KLAUS M, et al. Long time radiation resistant optical coatings for UV excimer laser applications[J].Proceedings of SPIE, 2001, 4347: 13-16.

    [5]

    WEI C Y, SHAO J D, HE H B, et al. Mechanism initiated by nanoabsorber for UV nanosecond pulse driven damage of dielectric coatings [J]. Optics Express, 2008, 16(5): 3376-3382.

    [6]

    BLASCHKE H, ARENS W, RISTAU D. Thickness dependence of damage thresholds for 193nm dielectric mirrors by predamage sensitive photothermal technique [J].Proceedings of SPIE, 2000, 3902: 242-249.

    [7]

    IZAWA T, YAMAMURA N, UCHIMURA R, et al. Damage thresholds and optical stabilities of fluoride HR coatings for 193nm [J].Proceedings of SPIE, 1994, 2114: 297-308.

    [8]

    BERNITZKI H, LAUTH H. Current status of radiation resistance of dielectric mirrors in the DUV[J].Proceedings of SPIE, 1998, 3578: 105-116.

    [9]

    HEBER J, THIELSCH R, BLASCHKE H, et al. Microstructure and radiation interactions of optical interference coatings for 193nm applications[J].Proceedings of SPIE, 1999, 3738: 159-165.

    [10]

    GUNSTER S, BLASCHKE H, RISTAU D. Laser resistivity of selected multilayer designs for DUV/VUV applications[J].Proceedings of SPIE, 2007, 6403: 640318.

    [11]

    DIJON J, QUESNEL E, PELLE C, et al. Laser damage of optical coating from UV to deep UV at 193nm[J].Proceedings of SPIE, 1998, 3578: 54-63.

    [12]

    BLASCHKE H, RIGGERS W, RISTAU D. Exposure of high reflecting fluoride coatings under high fluence conditions at 193nm[J].Proceedings of SPIE, 2010, 7842: 78420I.

    [13]

    ARNON O, BAUMEISTER P. Electric field distribution and the reduction of laser damage in multilayers [J].Applied Optics, 1980, 19(11): 1853-1855.

    [14]

    ABROMAVICIUS G, BUZELIS R, DRAZDYS R, et al. Influence of electric field distribution on laser induced damage threshold and morphology of high reflectance optical coatings[J].Proceedings of SPIE, 2007, 6720: 67200Y.

    [15]

    CHANG Y H, JIN Ch Sh, DENG W Y, et al. Study on laser induced damage of coating at 193nm [J]. Laser Technology, 2011, 35(3): 308-311(in Chinese).

    [16]

    MELNINKAITIS A, MIKSYS D, BALCIUNAS T,et al. Automated test station for laser induced damage threshold measurements according to ISO 11254-2 standard[J].Proceedings of SPIE, 2006, 6101: 61011J.

    [17]

    CHANG Y H, JIN Ch Sh, LI C, et al. Laser induced damage of fluoride coatings at 193nm [J]. Chinese Journal of Lasers,2013, 40(7): 0707001(in Chinese).

    [18]

    CHANG Y H, JIN Ch Sh, LI C, et al.Optical characterization and structure properties of ultraviolet LaF3 thin films by thermal evaporation [J]. Chinese Journal of Lasers, 2012, 39(10): 1007002(in Chinese).

计量
  • 文章访问数:  2
  • HTML全文浏览量:  0
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-11
  • 修回日期:  2013-09-15
  • 发布日期:  2014-05-24

目录

    /

    返回文章
    返回