高级检索

1.3μm波段单横模大功率输出量子点激光器

宗磊, 王英

宗磊, 王英. 1.3μm波段单横模大功率输出量子点激光器[J]. 激光技术, 2014, 38(1): 6-10. DOI: 10.7510/jgjs.issn.1001-3806.2014.01.002
引用本文: 宗磊, 王英. 1.3μm波段单横模大功率输出量子点激光器[J]. 激光技术, 2014, 38(1): 6-10. DOI: 10.7510/jgjs.issn.1001-3806.2014.01.002
ZONG Lei, WANG Ying. High output power single transverse mode quantum dot lasers at 1.3μm[J]. LASER TECHNOLOGY, 2014, 38(1): 6-10. DOI: 10.7510/jgjs.issn.1001-3806.2014.01.002
Citation: ZONG Lei, WANG Ying. High output power single transverse mode quantum dot lasers at 1.3μm[J]. LASER TECHNOLOGY, 2014, 38(1): 6-10. DOI: 10.7510/jgjs.issn.1001-3806.2014.01.002

1.3μm波段单横模大功率输出量子点激光器

详细信息
  • 中图分类号: TN248;O472+.3

High output power single transverse mode quantum dot lasers at 1.3μm

  • 摘要: 为了制备大功率、单横模输出的量子点激光器,对有源多模干涉波导结构进行了研究。通过优化器件结构设计,采用1×1型有源多模干涉波导结构,以均匀多层InAs/InGaAs/GaAs量子点材料作为有源区,制备了1.3μm波段的有源多模干涉结构量子点激光器。连续电流注入条件下的测试结果表明,与传统的均匀波导结构器件相比,有源多模干涉结构器件具有更低的串联电阻和更好的散热性能;在连续电流为0.5A的小注入情况下,器件的输出功率可达114mW、中心波长为1332nm。结果表明,有源多模干涉结构器件是制备大功率、单横模输出光发射器件的一种有效的器件结构。
    Abstract: An active multi-mode-interferometer (MMI) waveguide configuration was introduced and designed for single transverse mode laser diode with high output power. By using InAs/InGaAs/GaAs quantum dots (QD) as the active region, 1.3μm QD laser diode with the 1×1 MMI waveguide configuration was fabricated. It was demonstrated that the QD laser diode with the active MMI configuration exhibited improved heat dissipation and optical performance compared to the device with regular uniform waveguide structure. At a continuous wave injection current of 0.5A, a high output power of 114mW was obtained from the narrow waveguide while the laser diode emitting at 1332nm. The systematic study shows that the device with MMI waveguide configuration is instructive device for the fabrication of single transverse mode light emitting devices with high output power.
  • [1]

    NGO C Y, YOON S F, LIM D R, et al. Optical properties of 1.3μm InAs/GaAs bilayer quantum dots with high areal density[J]. Applied Physical Letters, 2009, 95(18):1913-1915.

    [2]

    MAJID M A, CHILDS D T D, KENNEDY K, et al. O-band excited state quantum dot bilayer lasers[J]. Applied Physical Letters, 2011, 99(5):1101-1103.

    [3]

    LU W L, ZHENG Y, ZHAO W L, et al. Analysis coupling between a laser and a single-mode fiber with a ball lens based on Monte Carlo method[J]. Laser Technology, 2012, 36(3): 338-341 (in Chinese).

    [4]

    HAMAMOTO K, GINI E, HOLTMANN C, et al. Single transverse mode active multimode interferometer InGaAsP/InP laser diode[J]. Electronics Letters, 1998, 34(5):462-464.

    [5]

    OHYA M, NANIWAE K, SUDO S, et al. Over 1W output power with low driving voltage 14xxnm pump laser diodes using active multimode-interferometer[J]. Electronics Letters, 2004, 40(17):1063-1064.

    [6]

    HAMAMOTO K, GINI E, HOLTMANN C, et al. Active multi-mode-interferometer semiconductor optical amplifier[J]. Electronics Letters, 2000, 36(14):1218-1220.

    [7]

    BACHMANN M, BESSE P A, MELCHIOR H. General self-imaging properties in N×N multimode interference couplers including phase relations[J]. Applied Optics, 1994, 33(18):3905-3911.

    [8]

    LUCAS B, ERIK C M P. Optical multi-mode interference devices based onself-imaging principles and applications[J]. IEEE Journal of Lightwave Technology, 1995, 13(4):615-627.

    [9]

    MARCUSE D. Pulse propagation in multimode dielectric waveguides[J]. Bell System Technology Journal, 1972, 51(6):1199-1232.

    [10]

    BRYNGDAHL O. Imaging formation using self-imaging techniques[J]. Journal of the Optical Society of America, 1973, 63(4):416-419.

    [11]

    ULRICH R. Self-imaging in homogeneous optical-waveguides[J]. Applied Physical Letters, 1975, 27(6):337-339.

    [12]

    ULRICH R, KAMIYA T. Resolution of self-images in planar optical-waveguides[J]. Journal of the Optical Society of America, 1978, 68(5):583-592.

    [13]

    XU X M, LI W, FANG L G, et al. Coupling characteristics of five parallel photonic crystal waveguides and its application[J]. Laser Technology, 2009, 33(4): 416-418 (in Chinese).

    [14]

    MA L F, LIU M, DONG Ch P, et al. Control of surface modes in hollow dual-core photonic crystal fibers[J]. Laser Technology, 2011, 35(6): 748-751 (in Chinese).

    [15]

    SONG D J, XIE K, XIAO J. Mode field and dispersion analysis of photonic crystal fiber based on finite element method[J]. Laser Technology, 2012, 36(1): 111-113 (in Chinese).

    [16]

    ZHANG M, KRÜGER A C, GROOTHOFF N, et al. Relaxed fabrication tolereance for self-imaging photonic crystal waveguide splitters using a tapered multimode interference region[J]. Optics Letters, 2011, 36(16):3058-3060.

计量
  • 文章访问数:  3
  • HTML全文浏览量:  0
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-24
  • 修回日期:  2013-04-06
  • 发布日期:  2014-01-24

目录

    /

    返回文章
    返回