高级检索

水体后向散射光能量变化规律的仿真与实验

葛卫龙, 华良洪, 张晓晖

葛卫龙, 华良洪, 张晓晖. 水体后向散射光能量变化规律的仿真与实验[J]. 激光技术, 2013, 37(6): 756-759. DOI: 10.7510/jgjs.issn.1001-3806.2013.06.011
引用本文: 葛卫龙, 华良洪, 张晓晖. 水体后向散射光能量变化规律的仿真与实验[J]. 激光技术, 2013, 37(6): 756-759. DOI: 10.7510/jgjs.issn.1001-3806.2013.06.011
GE Wei-long, HUA Liang-hong, ZHANG Xiao-hui. Simulation and experiment of change rule of water backscattering light energy[J]. LASER TECHNOLOGY, 2013, 37(6): 756-759. DOI: 10.7510/jgjs.issn.1001-3806.2013.06.011
Citation: GE Wei-long, HUA Liang-hong, ZHANG Xiao-hui. Simulation and experiment of change rule of water backscattering light energy[J]. LASER TECHNOLOGY, 2013, 37(6): 756-759. DOI: 10.7510/jgjs.issn.1001-3806.2013.06.011

水体后向散射光能量变化规律的仿真与实验

基金项目: 

国家部委基金资助项目(4010714010301)

详细信息
    作者简介:

    葛卫龙(1979-),男,讲师,博士,主要从事水下激光成像及图像处理技术等方面的研究。E-mail:dragon7209@163.com

  • 中图分类号: TN249

Simulation and experiment of change rule of water backscattering light energy

  • 摘要: 为了研究距离选通水下成像系统在采用等步长搜索策略进行目标搜索过程中增强型电荷耦合器件(ICCD)接收水体后向散射光能量的变化规律,建立了ICCD接收水体后向散射光能量计算模型,推导了单次成像时ICCD接收水体后向散射光能量的计算公式,对选通成像系统在搜索目标过程中,ICCD接收到水体后向散射光能量的变化规律进行了仿真计算和实验验证,利用ICCD显示图像的平均灰度和ICCD接收到水体后向散射光能量的对应关系,实验中得到了水体后向散射光能量变化规律的数据。结果表明,ICCD接收到的水体后向散射光能量随着距离增大近似呈指数下降。
    Abstract: In order to study the change rule of water backscattering light energy received by a intensified charge-coupled detector(ICCD) in the process of searching for underwater targets by the equal step length, a model of water backsca-ttering light energy received by the ICCD was built, and the formula of water backscattering light power received by the ICCD was deduced in a single imaging. Simulation computation and experiment validation were carried through. According to dependence of mean grayscale of the image on the water backscattering light energy, the data of the change rule of water backscattering light energy was obtained. The result shows that water backscattering light energy descends along with the distance of water accretion in exponent rule approximately.
  • [1]

    JAFFE J S, MOORE K D, McLEAN J, et al. Underwater optical imaging: status and prospects[J]. Oceanography, 2001, 14(3): 64C76.

    [2]

    GE W L, HAN H W, ZHANG X H. A new kind of underwater photoelectric imaging system[J]. Proceedings of SPIE, 2009, 7382: 73824T.

    [3]

    MEDONALD T E, YATES G J, GVERNA F H, et al. Range gated imaging experiments using gated intensifiers[J]. Proceedings of SPIE,1999, 3642 :142-148.

    [4]

    BAI L F, ZHANG Y, CHEN Q, et al. Some questions in the realization of range gated imaging[J]. Infrared and Laser Engineering, 2009, 38(1): 57-61(in chinese).

    [5]

    HAN H W, ZHANG X H, GE W L. 3-D noise analysis of underwater laser image sequence[J]. Laser Technology, 2011, 35(4): 518-521(in Chinese).

    [6]

    SUN J, ZHANG X H, GE W L, et al.Relation between imaging quality and gate-control signal of underwater range-gated imaging system[J]. Acta Optica Sinica, 2009, 29(8):2185-2190(in Chinese).

    [7]

    HUANG Y W, JIN W Q, WANG X, et al. Theoretical optical backscattering model for staring underwater laser imaging[J]. Acta Optica Sinica, 2007, 27(7): 1192-1198(in Chinese).

    [8]

    LI L,GAO ZH Y, WANG X, et al. Optical backscatter calculations for an underwater range-gated imaging system[J]. Transcations of Beijing Institute of Technology, 2003, 23(4): 489-491(in Chinese).

    [9]

    HAN H W, ZHANG X H, GE W L. The study of maximum detecting performance of underwater laser rang-gated imaging system based on a model[J].Chinese Journal of Lasers, 2011, 38(1): 0109001(in Chinese).

    [10]

    HAN H W, ZHANG X H, GE W L. A variable step scan method for underwater range-gated imaging[J]. Laser Technology, 2011,35(2):226-229(in Chinese).

计量
  • 文章访问数:  4
  • HTML全文浏览量:  0
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-23
  • 修回日期:  2013-05-18
  • 发布日期:  2013-11-24

目录

    /

    返回文章
    返回