Non-uniform illumination speckle image correction based on multi-scale bilateral filtering Retinex
-
摘要:
为了解决场景中非均匀光照导致散斑图像质量下降,进而影响数字图像相关测试精度的问题,采用多尺度双边滤波Retinex算法对散斑图像进行光学校正,实现光照不均匀场景下位移场与应力场的高精度光学测量;进行了模拟散斑图像的亚像素位移的实验,并与现有图像光学校正算法进行对比,取得了相应散斑图像位移均值误差、标准偏差以及质量评价指标数据。结果表明,所提出的算法对于非均匀光照散斑图像具有良好的校正效果,可以解决图像边界模糊和局部过度校正的问题,校正后散斑图像的平均灰度梯度从12.986上升到14.574,位移标准偏差从0.0443下降到0.0335。该方法可以增强散斑质量,保证光照不均匀场景下数字图像相关方法的测试精度和稳定性,提高复杂光照场景下数字图像相关方法的测试精度,为实际环境中光照突变的非接触测量提供了参考。
Abstract:In order to solve the problem of speckle image quality degradation caused by non-uniform lighting in the scene, which affects the testing accuracy of digital image correlation, the multi-scale bilateral filtering Retinex algorithm was used to perform optical correction on speckle images, achieving high-precision optical measurement of displacement and stress fields in non-uniform lighting scenes. Experiments were conducted to simulate sub-pixel displacement of speckle images and compared them with existing image optical correction algorithms, the corresponding speckle image displacement mean error, standard deviation, and quality evaluation index data were respectively obtained. The results show that the proposed algorithm has a good correction effect on non-uniform illumination speckle images, and the problems of image boundary blur and local overcorrection can be solved. The average grayscale gradient of the corrected speckle image increased from 12.986 to 14.574, and the displacement standard deviation decreased from 0.0443 to 0.0335. This method can effectively enhance the quality of speckle, ensure the testing accuracy and stability of digital image correlation methods in scenarios with uneven lighting, improve the testing accuracy of digital image correlation methods in complex lighting scenarios, and provide reference for non-contact measurement of lighting mutations in actual environments.
-
-
表 1 4幅散斑图像平均均值误差与平均标准偏差
Table 1 Average mean error and average standard deviation of four speckle images
speckle image simulated speckle sample Ⅰ sample Ⅱ sample Ⅲ |ue|/pixel 0.00036 0.00079 0.00104 0.00132 σe/pixel 0.00100 0.01771 0.02234 0.04013 表 2 双边滤波参数
Table 2 Parameters of the bilateral filter
parameter sample Ⅰ sample Ⅱ sample Ⅲ σr/pixel (20,80,240) (20,80,250) (20,80,250) σv/pixel (1,2,3) (1,1.5,2) (1,1.5,2) 表 3 校正前后3幅散斑图像均值误差与标准偏差
Table 3 Mean error and standard deviation of three speckle images before and after correction
parameter sample Ⅰ sample Ⅱ sample Ⅲ before correction after correction before correction after correction before correction after correction |ue|/pixel 0.00079 0.00073 0.00104 0.00077 0.00132 0.00086 σe/pixel 0.01771 0.01021 0.02234 0.01156 0.04013 0.01387 MIG 10.5043 19.9006 13.2436 20.9006 7.84471 20.6419 表 4 各算法校正后散斑图像的评价指标
Table 4 Evaluation metrics for speckle images after correction by different algorithms
表 5 非均匀光照散斑图像校正前后评价指标
Table 5 Evaluation indicators for non-uniform illumination speckle images before and after correction
speckle image normal light speckle images before displacement after displacement sample Ⅳ sample Ⅴ sample Ⅳ sample Ⅴ σe/pixel — 0.0443 0.0335 MIG 17.759 12.976 12.995 14.579 14.569 PSNR — 14.756 14.827 19.064 19.295 SSIM — 0.1311 0.1587 0.2348 0.2819 -
[1] 王俊松, 张吴记, 潘志伟, 等. 基于激光散斑数字图像相关法的热应变测量[J]. 激光技术, 2023, 47(2): 171-177. DOI: 10.7510/jgjs.issn.1001-3806.2023.02.003 WANG J S, ZHANG W J, PAN Zh W, et al. Thermal strain measurement based on laser speckle digital image correlation method[J]. Laser Technology, 2023, 47(2): 171-177(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2023.02.003
[2] SUTTON M A. Experimental measurements using digital image correlation methods: Brief background and perspective on future developments[J]. Journal of Engineering Materials and Technology-Transactions of the Asme, 2023, 145(1): 014701. DOI: 10.1115/1.4055471
[3] GOULMY J P, JÉGOU S, BARRALLIER L. Towards an image quality criterion to optimize digital image correlation. Use of an analytical model to optimize acquisition conditions[J]. Optics & Laser Technology, 2022, 148: 107792.
[4] HOLMES J, SOMMACAL S, DAS R, et al. Digital image and volume correlation for deformation and damage characterisation of fibre-reinforced composites: A review[J]. Composite Structures, 2023, 315: 116994. DOI: 10.1016/j.compstruct.2023.116994
[5] YAN X, DENG C, ZHAO Y, et al. Mechanical performance study of pipe-liner composite structure based on the digital image correlation method[J]. IEEE Transactionson Instrumentation and Measurement, 2023, 72: 3504212.
[6] GOLEWSKI G L. An extensive investigations on fracture parameters of concretes based on quaternary binders (QBC) by means of the DIC technique[J]. Construction and Building Materials, 2022, 351: 128823. DOI: 10.1016/j.conbuildmat.2022.128823
[7] BLIKHARSKYY Y, KOPⅡKA N, KHMIL R, et al. Review of development and application of digital image correlation method for study of stress-strain state of rcstructures[J]. Applied Sciences, 2022, 12(19): 10157. DOI: 10.3390/app121910157
[8] AL-SALIH H, JUNO M, COLLINS W, et al. Application of a digital image correlation bridge inspection methodology on geometrically complex bifurcated distortion-induced fatigue cracking[J]. Fatigue & Fracture of Engineering Materials & Structures, 2021, 44(11): 3186-3201. http://openurl.ebsco.com/contentitem/doi:10.1111%2Fffe.13453?sid=ebsco:plink:crawler&id=ebsco:doi:10.1111%2Fffe.13453
[9] PAN B. Digital image correlation for surface deformation measurement: Historical developments, recent advances and future goals[J]. Measurement Science and Technology, 2018, 29(8): 45-49. http://smartsearch.nstl.gov.cn/paper_detail.html?id=b1faa885a1bfafb2c4409a60072c092c
[10] 俞海, 刘云鹏, 郭荣鑫, 等. 数字图像相关法散斑图质量评价方法[J]. 激光技术, 2020, 44(2): 237-243. DOI: 10.7510/jgjs.issn.1001-3806.2020.02.018 YU H, LIU Y P, GUO R X, et al. Assessment method of speckle pattern quality in digitalimage correlation[J]. Laser Technology, 2020, 44(2): 237-243(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2020.02.018
[11] DEY N. Uneven illumination correction of digital images: A survey of the state-of-the-art[J]. Optik, 2019, 183: 483-495. DOI: 10.1016/j.ijleo.2019.02.118
[12] CAI Y, FU X, LI F, et al. Application of SSR for bridge deflection measurement by using of digital image correlation[C]//2019 IEEE 4th International Conference on Image, Vision and Computing. New York, USA: IEEE Press, 2019: 129-133.
[13] PAN B, WU D, XIA Y. An active imaging digital image correlation method for deformation measurement insensitive to ambient light[J]. Optics & Laser Technology, 2012, 44(1): 204-209. http://www.sciencedirect.com/science/article/pii/S0030399211001794
[14] XU J, MOUSSAWI A, GRAS R, et al. Using image gradients to improve robustness of digital image correlation to non-uniform illumination: Effects of weighting and normalization choices[J]. Experimental Mechanics, 2015, 55(5): 963-979. DOI: 10.1007/s11340-015-9996-1
[15] ZHAO J, YANG P, ZHAO Y. Neighborhood binary speckle pattern for deformation measurements insensitive to local illumination variation by digital image correlation[J]. Applied Optics, 2017, 56(16): 4708-4719. DOI: 10.1364/AO.56.004708
[16] GU G, SHE B, XU G, et al. Non-uniform illumination correction based on the retinex theory in digital image correlation measurement method[J]. Optica Applicata, 2017, 47(2): 199-208.
[17] LAND E H, McCANN J J. Lightness and retinex theory[J]. Journal of the Optical Society of America, 1971, 61(1): 1-11. DOI: 10.1364/JOSA.61.000001
[18] SUN L, TANG C, XU M, et al. Non-uniform illumination correction based on multi-scale Retinex in digital image correlation[J]. Applied Optics, 2021, 60(19): 5599-5609. DOI: 10.1364/AO.425142
[19] 洪存存, 王雪琨, 于文文, 等. 基于改进双边滤波的皮革缺陷检测[J]. 激光技术, 2021, 45(3): 373-377. DOI: 10.7510/jgjs.issn.1001-3806.2021.03.019 HONG C C, WANG X K, YU W W, et al. Leather defect detection based on improved bilateral filtering[J]. Laser Technology, 2021, 45(3): 373-377(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2021.03.019
[20] LI M, LIU J, YANG W, et al. Structure-revealing low-light image enhancement via robust retinex model[J]. IEEE Transactions on Image Processing, 2018, 27(6): 2828-2841. DOI: 10.1109/TIP.2018.2810539
[21] ZHU A, ZHANG L, SHEN Y, et al. Zero-shot restoration of underexposed images via robust retinex decomposition[C]//2020 IEEE International Conference on Multimedia and Exposition. New York, USA: IEEE Press, 2020: 1-6.
[22] GAO Y, SU C, XU Z. Color image enhancement algorithm based on improved Retinex algorithm[C]//2022 Asia Conference on Algorithms, Computing and Machine Learnin. New York, USA: IEEE Press, 2022: 234-238.
[23] HUANG S C, CHENG F C, CHIU Y S. Efficient contrast enhancement using adaptive gamma correction with weighting distribution[J]. IEEE Transactions on Image Processing, 2013, 22(3): 1032-1041. DOI: 10.1109/TIP.2012.2226047
[24] CHANG Y, JUNG C, KE P, et al. Automatic contrast-limited adaptive histogram equalization with dual gamma correction[J]. IEEE Access, 2018, 6: 11782-11792. DOI: 10.1109/ACCESS.2018.2797872
[25] PAN B, LU Z, XIE H. Mean intensity gradient: An effective global parameter for quality assessment of the speckle patterns used in digital image correlation[J]. Optics and Lasers in Engineering, 2010, 48(4): 469-477. DOI: 10.1016/j.optlaseng.2009.08.010
[26] 潘兵, 谢惠民, 戴福隆. 数字图像相关中亚像素位移测量算法的研究[J]. 力学学报, 2007, 23(2): 245-252. PAN B, XIE H M, DAI F L. An investigation of sub-pixel displacements registration algorithms in digital image correlation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(2): 245-252(in Chinese).