Dual-wavelength laser based on saturable absorber and 3 dB ring mirror filter structure
-
摘要:
为了提高双波长环形腔激光器的激光输出质量, 将掺铒光纤可饱和吸收体加入3 dB环镜, 构成滤波环, 采用滤波环与输出端耦合器级联实现激光器输出滤波, 并进行了理论分析和实验验证。结果表明, 波长为1554 nm和1562 nm的激光输出带宽分别为0.029 nm和0.038 nm, 双波长峰值波动分别为0.0048 mW和0.0087 mW, 信噪比为55 dB。此基于可饱和吸收体和3 dB环镜滤波器结构的双波长激光器具有更好的线宽压窄特性和稳定性, 可应用于大容量通信和激光治疗等领域。
Abstract:In order to improve the laser output quality of a dual-wavelength annular cavity laser, a saturable absorber of erbium-doped fiber was added to the 3 dB ring mirror to form a filter ring, and the filter ring and the output coupler were cascaded to realize the laser output filtering. Theoretical analysis and experimental verification were carried out. The results show that the laser output bandwidth of 1554 nm and 1562 nm wavelengths are 0.029 nm and 0.038 nm, the peak fluctuations of dual wavelengths are 0.0048 mW and 0.0087 mW, and the signal-to-noise ratio is 55 dB, respectively. The results show that the dual-wavelength laser based on the saturable absorber and 3 dB ring mirror filter structure has better linewidth narrowing characteristics and stability. It can be used in the field of high capacity communication and laser therapy.
-
Keywords:
- lasers /
- annular cavity /
- dual wavelength /
- saturable absorber /
- narrow linewidth
-
-
表 1 各组实验的SNR与线宽数据
Table 1 SNR and linewidth data of each group
without auxiliary cavity
(control group 1)with EDF-SA loop
(control group 2)with SALFM
(control group 3)with SALFM and EDF-SA loop
(experimental group)1554 nm 1562 nm 1554 nm 1562 nm 1554 nm 1562 nm 1554 nm 1562 nm SNR/dB 60 60 62 61 57 58 55 55 line width/nm 0.141 0.142 0.58 0.58 0.38 0.43 0.29 0.38 -
[1] YIN B, FENG S C, LIU Z B, et al. Tunable and switchable dual-wavelength single polarization narrow linewidth SLM erbium-doped fiber laser based on a PM-CMFBG filter[J]. Optics Express, 2014, 22(19): 22528-22533. DOI: 10.1364/OE.22.022528
[2] WANG Z, SHANG J, MU K, et al. Single-longitudinal-mode fiber laser with an ultra-narrow linewidth and extremely high stability obtained by utilizing a triple-ring passive subring resonator[J]. Optics & Laser Technology, 2020, 130: 106329. https://www.sciencedirect.com/science/article/pii/S0030399220309622
[3] LEE S H, YUN H G, LEE M H, et al. Single-longitudinal-mode fiber ring lasers with a saturation-level-controlled saturable absorber[J]. Optics Communications, 2013, 308: 15-19. DOI: 10.1016/j.optcom.2013.06.008
[4] FENG S Ch, LU Sh H, PENG W J, et al. Tunable single-polarization single-longitudinal-mode erbium-doped fiber ring laser employing a CMFBG filter and saturable absorber[J]. Optics & Laser Technology, 2013, 47: 102-106. https://www.sciencedirect.com/science/article/pii/S0030399212003726
[5] LI Y, SUN Q Zh, XU Zh L, et al. A single longitudinal mode fiber ring laser based on cascaded microfiber knots filter[J]. IEEE Photonics Technology Letters, 2016, 28(20): 2172-2175. DOI: 10.1109/LPT.2016.2586098
[6] YEH Ch H, CHEN J Y, CHEN H Zh, et al. Stable and tunable single-longitudinal-mode erbium-doped fiber triple-ring laser with power-equalized Output[J]. IEEE Photonics Journal, 2016, 8(2): 1-6. https://ieeexplore.ieee.org/document/7430233
[7] LI J W, FANG X H, XU B R, et al. Single-longitudinal-mode(SLM) fiber ring laser based on semicircular single mode fiberstructure[C]//International Conference on Optical Communications and Networks. New York, USA: IEEE Press, 2017: 8121459.
[8] LU B L, KANG J, QI X Y, et al. High-stability broadband wavelength-tunable single-frequency ytterbium-doped all-fiber compound ring cavity[J]. IEEE Photonics Journal, 2017, 9(2): 1501708.
[9] WAN H D, LIU L Q, DING Z Q, et al. Single-longitudinal-mode fiber ring lasers with taper-coupled double-microsphere-cavities[J]. IEEE Photonics Technology Letters, 2017, 29(23): 2123-2126. DOI: 10.1109/LPT.2017.2766183
[10] LIU L Q, WAN H D, WANG J, et al. A single-longitudinal-mode, narrow linewidth fiber ring laser stabilized by taper-coupled double-microsphere-cavities[C]//International Conference on Optical Communications and Networks. New York, USA: IEEE Press, 2017: 8121446.
[11] SUN T G, GUO Y B, WANG T Sh, et al. A stable and tunable linear polarization single longitudinal mode fiber ring laser[J]. Optical and Quantum Electronics, 2018, 50: 148. DOI: 10.1007/s11082-018-1404-5
[12] WAN H D, CAI C, WANG J, et al. Broadband tunable single-longitudinal-mode erbium-doped fiber ring laser based on a microfiber knot resonator[J]. Applied Optics, 2020, 59(34): 10929-10932. DOI: 10.1364/AO.404530
[13] WANG Zh K, SHANG J M, MU K L, et al. Single-longitudinal-mode fiber laser with an ultra-narrow linewidth and extremely high stability obtained by utilizing a triple-ring passive subring resonator[J]. Optics & Laser Technology, 2020, 130: 106329. https://www.sciencedirect.com/science/article/pii/S0030399220309622
[14] YEH Ch H, WANG B Y, HSU W H, et al. Stable and selectable erbium multiple-ring laser with self-injection loop[J]. Optics & Laser Technology, 2021, 141: 107106.
[15] KELLER U. Recent developments in compact ultrafast lasers[J]. Nature, 2003, 424: 831-838. DOI: 10.1038/nature01938
[16] 马龑, 李文彩, 龙虎, 等. 基于级联光纤环的复合环形腔单纵模光纤激光器研究[J]. 量子电子学报, 2014, 31(2): 149-153. MA Y, LI W C, LONG H, et al. Research on compound toroidal cavity single longitudinal mode fiber laser based on cascaded fiber ring[J]. Chinese Journal of Quantum Electronics, 2014, 31(2): 149-153(in Chinese).
[17] 刘梦颖. 基于在线型M-Z滤波器的可调谐掺铒光纤激光器的研究[D]. 天津: 天津理工大学, 2016. LIU M Y. Research on tunable erbium-doped fiber lasers based on in-line M-Z filter[D]. Tianjin: Tianjin University of Technology, 2016(in Chinese).
[18] 赵冉冉, 何巍, 祝连庆. 一种新型窄线宽掺铒光纤激光器[J]. 激光与红外, 2015, 45(5): 492-495. ZHAO R R, HEI W, ZHU L Q. A novel narrow-width erbium-doped fiber laser[J]. Laser & Infrared, 2015, 45(5): 492-495(in Chinese).
[19] 耿雪萍. 双波长环形腔掺铒光纤激光器的研究[D]. 成都: 西南交通大学, 2009. GENG X P. Research on dual-wavelength ring cavity erbium-doped fiber lasers[D]. Chengdu: Southwest Jiaotong University, 2009(in Chinese).
[20] 徐志晨. 窄线宽掺铒光纤环形激光器技术研究[D]. 西安: 西安电子科技大学, 2018. XU Zh Ch. Research on narrow-width erbium-doped fiber ring laser[D]. Xi'an: Xidian University, 2018(in Chinese).
[21] 李立功. 现代电子测试技术[M]. 北京: 国防工业出版社, 2008: 337-340. LI L G. Modern electronic test technology[M]. Beijing: National Defense Industries Press, 2008: 337-340(in Chinese).
[22] YE F, HOU Ch L. Development and status of optical Doppler noninvasive blood flow measurement technology[J]. Laser Technology, 2023, 47(2): 205-213(in Chinese).