高级检索

基于可饱和吸收体和3 dB环镜滤波器结构的双波长激光器

张威, 果鑫, 赖榕, 韩林桀, 夏志鸿

张威, 果鑫, 赖榕, 韩林桀, 夏志鸿. 基于可饱和吸收体和3 dB环镜滤波器结构的双波长激光器[J]. 激光技术, 2025, 49(1): 1-7. DOI: 10.7510/jgjs.issn.1001-3806.2025.01.001
引用本文: 张威, 果鑫, 赖榕, 韩林桀, 夏志鸿. 基于可饱和吸收体和3 dB环镜滤波器结构的双波长激光器[J]. 激光技术, 2025, 49(1): 1-7. DOI: 10.7510/jgjs.issn.1001-3806.2025.01.001
ZHANG Wei, GUO Xin, LAI Rong, HAN Linjie, XIA Zhihong. Dual-wavelength laser based on saturable absorber and 3 dB ring mirror filter structure[J]. LASER TECHNOLOGY, 2025, 49(1): 1-7. DOI: 10.7510/jgjs.issn.1001-3806.2025.01.001
Citation: ZHANG Wei, GUO Xin, LAI Rong, HAN Linjie, XIA Zhihong. Dual-wavelength laser based on saturable absorber and 3 dB ring mirror filter structure[J]. LASER TECHNOLOGY, 2025, 49(1): 1-7. DOI: 10.7510/jgjs.issn.1001-3806.2025.01.001

基于可饱和吸收体和3 dB环镜滤波器结构的双波长激光器

基金项目: 

湖南省教育厅科学研究重点项目 23A0446

湖南省自然科学基金(省市联合)资助项目 2022JJ50067

湖南工业大学2023年大学生创新创业训练计划项目 

详细信息
    通讯作者:

    果鑫, 578713735@qq.com

  • 中图分类号: TN242

Dual-wavelength laser based on saturable absorber and 3 dB ring mirror filter structure

  • 摘要:

    为了提高双波长环形腔激光器的激光输出质量, 将掺铒光纤可饱和吸收体加入3 dB环镜, 构成滤波环, 采用滤波环与输出端耦合器级联实现激光器输出滤波, 并进行了理论分析和实验验证。结果表明, 波长为1554 nm和1562 nm的激光输出带宽分别为0.029 nm和0.038 nm, 双波长峰值波动分别为0.0048 mW和0.0087 mW, 信噪比为55 dB。此基于可饱和吸收体和3 dB环镜滤波器结构的双波长激光器具有更好的线宽压窄特性和稳定性, 可应用于大容量通信和激光治疗等领域。

    Abstract:

    In order to improve the laser output quality of a dual-wavelength annular cavity laser, a saturable absorber of erbium-doped fiber was added to the 3 dB ring mirror to form a filter ring, and the filter ring and the output coupler were cascaded to realize the laser output filtering. Theoretical analysis and experimental verification were carried out. The results show that the laser output bandwidth of 1554 nm and 1562 nm wavelengths are 0.029 nm and 0.038 nm, the peak fluctuations of dual wavelengths are 0.0048 mW and 0.0087 mW, and the signal-to-noise ratio is 55 dB, respectively. The results show that the dual-wavelength laser based on the saturable absorber and 3 dB ring mirror filter structure has better linewidth narrowing characteristics and stability. It can be used in the field of high capacity communication and laser therapy.

  • 图  7   对照实验结构图

    Figure  7.   Control experiment structure diagram

    图  1   SAFLM滤波环

    Figure  1.   SAFLM filter ring

    图  2   SAFLM各端口仿真图

    Figure  2.   SAFLM port simulation diagram

    图  3   实验结构简化图

    Figure  3.   Simplified diagram of experimental structure

    图  4   偏振控制器示意图

    Figure  4.   PC diagram

    图  5   实验结构图

    Figure  5.   Experimental structure diagram

    图  6   仿真结果图

    a—由OC直接加入EDF-SA的长度对SNR的影响  b—SALMF中EDF-SA长度对SNR及线宽的影响

    Figure  6.   Simulation results

    a—influence of EDF-SA length directly added by OC on SNR  b—influence of EDF-SA length on SNR and line width in SALMF

    图  8   不同实验结构输出光谱对比图

    Figure  8.   Comparison of the output spectra of different experimental structures

    图  9   稳定性分析图

    Figure  9.   Stability analysis diagram

    表  1   各组实验的SNR与线宽数据

    Table  1   SNR and linewidth data of each group

    without auxiliary cavity
    (control group 1)
    with EDF-SA loop
    (control group 2)
    with SALFM
    (control group 3)
    with SALFM and EDF-SA loop
    (experimental group)
    1554 nm 1562 nm 1554 nm 1562 nm 1554 nm 1562 nm 1554 nm 1562 nm
    SNR/dB 60 60 62 61 57 58 55 55
    line width/nm 0.141 0.142 0.58 0.58 0.38 0.43 0.29 0.38
    下载: 导出CSV
  • [1]

    YIN B, FENG S C, LIU Z B, et al. Tunable and switchable dual-wavelength single polarization narrow linewidth SLM erbium-doped fiber laser based on a PM-CMFBG filter[J]. Optics Express, 2014, 22(19): 22528-22533. DOI: 10.1364/OE.22.022528

    [2]

    WANG Z, SHANG J, MU K, et al. Single-longitudinal-mode fiber laser with an ultra-narrow linewidth and extremely high stability obtained by utilizing a triple-ring passive subring resonator[J]. Optics & Laser Technology, 2020, 130: 106329. https://www.sciencedirect.com/science/article/pii/S0030399220309622

    [3]

    LEE S H, YUN H G, LEE M H, et al. Single-longitudinal-mode fiber ring lasers with a saturation-level-controlled saturable absorber[J]. Optics Communications, 2013, 308: 15-19. DOI: 10.1016/j.optcom.2013.06.008

    [4]

    FENG S Ch, LU Sh H, PENG W J, et al. Tunable single-polarization single-longitudinal-mode erbium-doped fiber ring laser employing a CMFBG filter and saturable absorber[J]. Optics & Laser Technology, 2013, 47: 102-106. https://www.sciencedirect.com/science/article/pii/S0030399212003726

    [5]

    LI Y, SUN Q Zh, XU Zh L, et al. A single longitudinal mode fiber ring laser based on cascaded microfiber knots filter[J]. IEEE Photonics Technology Letters, 2016, 28(20): 2172-2175. DOI: 10.1109/LPT.2016.2586098

    [6]

    YEH Ch H, CHEN J Y, CHEN H Zh, et al. Stable and tunable single-longitudinal-mode erbium-doped fiber triple-ring laser with power-equalized Output[J]. IEEE Photonics Journal, 2016, 8(2): 1-6. https://ieeexplore.ieee.org/document/7430233

    [7]

    LI J W, FANG X H, XU B R, et al. Single-longitudinal-mode(SLM) fiber ring laser based on semicircular single mode fiberstructure[C]//International Conference on Optical Communications and Networks. New York, USA: IEEE Press, 2017: 8121459.

    [8]

    LU B L, KANG J, QI X Y, et al. High-stability broadband wavelength-tunable single-frequency ytterbium-doped all-fiber compound ring cavity[J]. IEEE Photonics Journal, 2017, 9(2): 1501708.

    [9]

    WAN H D, LIU L Q, DING Z Q, et al. Single-longitudinal-mode fiber ring lasers with taper-coupled double-microsphere-cavities[J]. IEEE Photonics Technology Letters, 2017, 29(23): 2123-2126. DOI: 10.1109/LPT.2017.2766183

    [10]

    LIU L Q, WAN H D, WANG J, et al. A single-longitudinal-mode, narrow linewidth fiber ring laser stabilized by taper-coupled double-microsphere-cavities[C]//International Conference on Optical Communications and Networks. New York, USA: IEEE Press, 2017: 8121446.

    [11]

    SUN T G, GUO Y B, WANG T Sh, et al. A stable and tunable linear polarization single longitudinal mode fiber ring laser[J]. Optical and Quantum Electronics, 2018, 50: 148. DOI: 10.1007/s11082-018-1404-5

    [12]

    WAN H D, CAI C, WANG J, et al. Broadband tunable single-longitudinal-mode erbium-doped fiber ring laser based on a microfiber knot resonator[J]. Applied Optics, 2020, 59(34): 10929-10932. DOI: 10.1364/AO.404530

    [13]

    WANG Zh K, SHANG J M, MU K L, et al. Single-longitudinal-mode fiber laser with an ultra-narrow linewidth and extremely high stability obtained by utilizing a triple-ring passive subring resonator[J]. Optics & Laser Technology, 2020, 130: 106329. https://www.sciencedirect.com/science/article/pii/S0030399220309622

    [14]

    YEH Ch H, WANG B Y, HSU W H, et al. Stable and selectable erbium multiple-ring laser with self-injection loop[J]. Optics & Laser Technology, 2021, 141: 107106.

    [15]

    KELLER U. Recent developments in compact ultrafast lasers[J]. Nature, 2003, 424: 831-838. DOI: 10.1038/nature01938

    [16] 马龑, 李文彩, 龙虎, 等. 基于级联光纤环的复合环形腔单纵模光纤激光器研究[J]. 量子电子学报, 2014, 31(2): 149-153.

    MA Y, LI W C, LONG H, et al. Research on compound toroidal cavity single longitudinal mode fiber laser based on cascaded fiber ring[J]. Chinese Journal of Quantum Electronics, 2014, 31(2): 149-153(in Chinese).

    [17] 刘梦颖. 基于在线型M-Z滤波器的可调谐掺铒光纤激光器的研究[D]. 天津: 天津理工大学, 2016.

    LIU M Y. Research on tunable erbium-doped fiber lasers based on in-line M-Z filter[D]. Tianjin: Tianjin University of Technology, 2016(in Chinese).

    [18] 赵冉冉, 何巍, 祝连庆. 一种新型窄线宽掺铒光纤激光器[J]. 激光与红外, 2015, 45(5): 492-495.

    ZHAO R R, HEI W, ZHU L Q. A novel narrow-width erbium-doped fiber laser[J]. Laser & Infrared, 2015, 45(5): 492-495(in Chinese).

    [19] 耿雪萍. 双波长环形腔掺铒光纤激光器的研究[D]. 成都: 西南交通大学, 2009.

    GENG X P. Research on dual-wavelength ring cavity erbium-doped fiber lasers[D]. Chengdu: Southwest Jiaotong University, 2009(in Chinese).

    [20] 徐志晨. 窄线宽掺铒光纤环形激光器技术研究[D]. 西安: 西安电子科技大学, 2018.

    XU Zh Ch. Research on narrow-width erbium-doped fiber ring laser[D]. Xi'an: Xidian University, 2018(in Chinese).

    [21] 李立功. 现代电子测试技术[M]. 北京: 国防工业出版社, 2008: 337-340.

    LI L G. Modern electronic test technology[M]. Beijing: National Defense Industries Press, 2008: 337-340(in Chinese).

    [22]

    YE F, HOU Ch L. Development and status of optical Doppler noninvasive blood flow measurement technology[J]. Laser Technology, 2023, 47(2): 205-213(in Chinese).

图(9)  /  表(1)
计量
  • 文章访问数:  105
  • HTML全文浏览量:  27
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-14
  • 修回日期:  2024-02-01
  • 刊出日期:  2025-01-24

目录

    /

    返回文章
    返回