高级检索

垂直腔面发射激光器阵列的热设计研究进展

金冬月, 洪福临, 张万荣, 张洪源, 王毅华, 王焕哲, 王楷尧, 关宝璐

金冬月, 洪福临, 张万荣, 张洪源, 王毅华, 王焕哲, 王楷尧, 关宝璐. 垂直腔面发射激光器阵列的热设计研究进展[J]. 激光技术, 2024, 48(6): 777-789. DOI: 10.7510/jgjs.issn.1001-3806.2024.06.002
引用本文: 金冬月, 洪福临, 张万荣, 张洪源, 王毅华, 王焕哲, 王楷尧, 关宝璐. 垂直腔面发射激光器阵列的热设计研究进展[J]. 激光技术, 2024, 48(6): 777-789. DOI: 10.7510/jgjs.issn.1001-3806.2024.06.002
JIN Dongyue, HONG Fulin, ZHANG Wanrong, ZHANG Hongyuan, WANG Yihua, WANG Huanzhe, WANG Kaiyao, GUAN Baolu. Advances in thermal design of vertical cavity surface emitting laser array[J]. LASER TECHNOLOGY, 2024, 48(6): 777-789. DOI: 10.7510/jgjs.issn.1001-3806.2024.06.002
Citation: JIN Dongyue, HONG Fulin, ZHANG Wanrong, ZHANG Hongyuan, WANG Yihua, WANG Huanzhe, WANG Kaiyao, GUAN Baolu. Advances in thermal design of vertical cavity surface emitting laser array[J]. LASER TECHNOLOGY, 2024, 48(6): 777-789. DOI: 10.7510/jgjs.issn.1001-3806.2024.06.002

垂直腔面发射激光器阵列的热设计研究进展

基金项目: 

激光器件技术重点实验室开放基金资助项目 KLLDT202306

国家自然科学基金资助项目 61575008

国家自然科学基金资助项目 61901010

国家自然科学基金资助项目 61774012

国家自然科学基金资助项目 61775007

北京市自然科学基金资助项目 4172011

国家自然科学基金资助项目 60908012

国家自然科学基金资助项目 61006059

详细信息
    通讯作者:

    关宝璐, gbl@bjut.edu.cn

  • 中图分类号: TN248.4

Advances in thermal design of vertical cavity surface emitting laser array

  • 摘要: 垂直腔面发射激光器(VCSEL)通常采用由小尺寸发光单元并联的2维阵列结构来提高输出光功率、改善激光光束质量,然而随着芯片尺寸不断缩小以及阵列集成度不断提高,由VCSEL单元自身功耗引起的自加热效应及各单元之间的热耦合效应将导致VCSEL阵列结温急剧上升,在热-光-电反馈作用下,将严重制约VCSEL阵列的光学性能及热可靠性,对VCSEL阵列热设计提出了迫切要求。在阐明VCSEL阵列产热机理的基础上,从热-光-电模型建立、热设计方法两方面归纳总结了VCSEL阵列热设计最新进展,并对热设计发展趋势进行了展望。
    Abstract: Vertical-cavity surface-emitting laser (VCSEL) usually adopt a 2-D array structure with small-sized light-emitting cells in parallel to increase the output optical power and to improve the laser beam quality. However, with the down scaling of the chip size and the increasing of the array integration, the self-heating effect caused by the power dissipation of the VCSEL cell and the thermal coupling effect among VCSEL cells will lead to a sharp increase in the junction temperature of the VCSEL array. Due to the effect of thermal-opto-electro feedback, the optical performance and thermal reliability of the VCSEL array will be limited seriously, which propose urgent requirements for the thermal design of the VCSEL array. Based on the heat generation mechanism of VSCEL array, latest development of VCSEL array thermal design was reviewed in detail from the aspects of thermal-opto-electro modeling and thermal design methodology. The development trend of thermal design in VCSEL array was also prospected.
  • 图  1   具有4×4个单元的VCSEL阵列结构示意图[15]

    Figure  1.   Schematic device structure of a 4×4 VCSEL array[15]

    图  2   具有M×N个单元的VCSEL阵列2维热网络[15]

    Figure  2.   2-D thermal network of VCSEL array with M×N cells[15]

    图  3   VCSEL激光器初级热-光-电模型等效电路[21]

    Figure  3.   Equivalent-circuit of simple thermal-opto-electro model of VCSEL[21]

    图  4   VCSEL阵列的电路级热-光-电模型等效电路[25]

    Figure  4.   Equivalent-circuit of VCSEL array thermal-opto-electro model[25]

    图  5   VCSEL的电路级热-光-电模型等效电路[26]

    Figure  5.   Equivalent-circuit of VCSEL thermal-opto-electro model[26]

    图  6   VCSEL热-电解析模型流程图[27]

    Figure  6.   Flow chart of VCSEL thermal-electro analytical model[27]

    图  7   行为级的VCSEL热-光-电解析模型流程图[29]

    Figure  7.   Flow chart of a behavioral VCSEL thermal-opto-electro analytical model[29]

    图  8   VCSEL激光器2维热-电有限元模型[33]

    Figure  8.   2-D thermal-electro finite element model of VCSEL[33]

    图  9   VCSEL激光器2维热光有限元模型[36]

    Figure  9.   2-D thermal-opto finite element model of VCSEL[36]

    图  10   基于有限元热模型的VCSEL截面温度、热流密度分布[38]

    Figure  10.   Temperature and heat flux distribution in cross-section of VCSEL with finite element thermal model[38]

    图  11   基于有限元热-电模型的VCSEL阵列横向热流和温度分布[41]

    Figure  11.   Heat flux and temperature distribution in lateral direction for VCSEL array with finite element thermal-electro model[41]

    图  12   VCSEL阵列3-D有限元热-电模型[42]

    a—表面温度分布 b—2维有源层温度分布 c—2维有源层折射率分布

    Figure  12.   3-D finite element model thermal-electro model of VCSEL array[42]

    a—temperature distribution in device surface b—2-D temperature distribution in active layer c—2-D refractive index in active layer

    图  13   具有非闭合型电极结构的VCSEL阵列表面示意图[44]

    Figure  13.   Surface schematic of VCSEL array with non-closed electrode structure[44]

    图  14   环形紧密堆积结构VCSEL阵列的原理图[45]

    Figure  14.   Schematic diagram of the ring close packing structure VCSEL array[45]

    图  15   具有19个单元的准蜂巢结构VCSEL阵列显微图[46]

    Figure  15.   Microscope images of honeycomb geometry structure VCSEL arrays with 19 cells[46]

    图  16   采用独立寻址技术的5×5单元VCSEL阵列显微图[47]

    Figure  16.   Microscope images of 5×5 VCSEL arrays with independent addressing technology[47]

    图  17   氧化孔径对VCSEL输出特性的影响[54]

    Figure  17.   Influence of oxide aperture on the output characteristics of VCSEL[54]

    图  18   VCSEL阵列非均匀氧化孔径设计[55]

    Figure  18.   Non-uniform oxidation aperture design of VCSEL array[55]

    图  19   单元间距对VCSEL阵列温度分布的影响[56]

    Figure  19.   Effect of cell spacing on the temperature distribution of the VCSEL array[56]

    图  20   3种VCSEL阵列单元排布方式[4]

    Figure  20.   Three-types of cell arrangement in VCSEL array[4]

    图  21   六边形单元排布设计对VCSEL阵列温度分布的影响[15]

    Figure  21.   Influence of hexagonal cell arrangement design on the temperature profile of VCSEL array[15]

    图  22   耦合线示意图[57]

    Figure  22.   Schematic coupling line[57]

    图  23   a—遍历设计算法示意图[59] b—优化的VCSEL阵列温度分布[59]

    Figure  23.   a—schematic of the traversal algorithm[59] b—the temperature profile of the optimized VCSEL array[59]

    图  24   自组织算法示意图[60]

    Figure  24.   Schematic diagram of self-organizing algorithm[60]

  • [1]

    SODA H, IGA K I, KITAHARA C, et al. GaInAsP/InP surface emitting injection lasers[J]. Japanese Journal of Applied Physics, 1979, 18(12): 2329-2330. DOI: 10.1143/JJAP.18.2329

    [2]

    IGA K. Forty years of vertical-cavity surface-emitting laser: Invention and innovation[J]. Japanese Journal of Applied Physics, 2018, 57(8S2): 08PA01. DOI: 10.7567/JJAP.57.08PA01

    [3]

    KASUKAWA A, TAKAKI K, IMAI S, et al. Enabling VCSEL technology for "Green" optical interconnect in HPC and data centers[C]//IEEE Photonic Society 24th Annual Meeting. New York, USA: IEEE Press, 2011: 393-394.

    [4]

    WANG C C, LI Ch, DAI J J, et al. Thermal analysis of VCSEL arrays based on first principle theory and finite element method[J]. Optical and Quantum Electronics, 2019, 51: 196. DOI: 10.1007/s11082-019-1909-6

    [5]

    HONG K B, HUANG W T, CHUNG H Ch, et al. High-speed and high-power 940 nm flip-chip VCSEL array for LiDAR application[J]. Crystals, 2021, 11(10): 1237. DOI: 10.3390/cryst11101237

    [6]

    CHENG Ch S, SHEN Ch Ch, KAO H Y, et al. 850/940 nm VCSEL for optical communication and 3D sensing[J]. Opto-Electronic Advances, 2018, 1(3): 180005.

    [7] 徐一帆, 施阳杰, 邵景珍, 等. 大功率半导体激光器的高精度脉冲电源设计[J]. 激光技术, 2023, 47(1): 108-114. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.017

    XU Y F, SHI Y J, SHAO J Zh, et al. Design of high-precision pulse power supply for high-power semiconductor laser[J]. Laser Technology, 2023, 47(1): 108-114(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2023.01.017

    [8] 胡烜瑜, 郑皞翾, 郑毅, 等. 基于合束的500 W蓝光半导体激光模块化研究[J]. 激光技术, 2024, 48(4): 470-476. DOI: 10.7510/jgjs.issn.1001-3806.2024.04.003

    HU X Y, ZHENG H X, ZHENG Y, et al. Research on modularization of 500 W bule semiconductor laser based on beam combination[J]. Laser Technology, 2024, 48(4): 470-476(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2024.04.003

    [9]

    TIBALDI A, BERTAZZI F, GOANO M, et al. VENUS: A vertical-cavity surface-emitting laser electro-opto-thermal numerical simulator[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(6): 1500212.

    [10]

    GREENBERG K, SUMMERS J, FARZANEH M, et al. Spatially-resolved thermal coupling in VCSEL arrays using thermoreflectance microscopy[C]//2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science. San Jose, UAS: Optica Publishing Group, 2008: 1-2.

    [11]

    WIPIEJEWSKI T, YOUNG D B, THIBEAULT B J, et al. Thermal crosstalk in 4×4 vertical-cavity surface-emitting laser arrays[J]. IEEE Photonics Technology Letters, 1996, 8(8): 980-982. DOI: 10.1109/68.508710

    [12]

    GREENBERG K, SUMMERS J, HUDGINGS J. Thermal coupling in vertical-cavity surface-emitting laser arrays[J]. IEEE Photonics Technology Letters, 2010, 22(9): 655-657. DOI: 10.1109/LPT.2010.2043728

    [13]

    PAN G Zh, XUN M, ZHAO Zh Zh, et al. High slope efficiency bipolar cascade 905 nm vertical cavity surface emitting laser[J]. IEEE Electron Device Letters, 2021, 42(9): 1342-1345. DOI: 10.1109/LED.2021.3098899

    [14]

    JIN D Y, ZHOU Y X, GUAN B L, et al. Thermally induced current bifurcation and drastically collapse of output optical power in VCSEL arrays[J]. IEEE Transactions on Electron Devices, 2023, 70(12): 6415-6420. DOI: 10.1109/TED.2023.3326117

    [15]

    JIN D Y, YANG Sh M, ZHANG F, et al. Thermal design of VCSEL arrays for optical output power improvement[J]. IEEE Transactions on Electron Devices, 2022, 69(7): 3761-3767. DOI: 10.1109/TED.2022.3177164

    [16]

    BAVEJA P, KOGEL B, WESTBERGH P, et al. Assessment of VCSEL thermal rollover mechanisms from measurements and empirical modeling[J]. Optics Express, 2011, 19(16): 15490-15505. DOI: 10.1364/OE.19.015490

    [17]

    COLDREN L, CORZINE S, MASHANOVITCH M. Diode lasers and photonic integrated circuits[M]. New York, USA: John Wiley & Sons Press, 2012: 60-64.

    [18]

    SIMONM S. Semiconductor devices: Physics and technology[M]. 3rd ed. New York, USA: John Wiley & Sons Press, 2008: 82-120.

    [19]

    BOER K W. The physics of solar cells[J]. Journal of Applied Physics, 1979, 50(8): 5356-5370. DOI: 10.1063/1.326636

    [20]

    WILMSEN C, TEMKIN H, COLDREN L. Vertical-cavity surface-emitting lasers: Design, fabrication, characterization, and applications[M]. Cambridge, UK: Cambridge University Press, 2001: 55-60.

    [21]

    MENA P V, MORIKUNI J J, KANG S M, et al. A simple rate-equation-based thermal VCSEL model[J]. IEEE Journal of Lightwave Technology, 1999, 17(5): 865-872. DOI: 10.1109/50.762905

    [22]

    MENA P V, MORIKUNI J J, KANG S M, et al. A comprehensive circuit-level model of vertical-cavity surface-emitting lasers[J]. Journal of Lightwave Technology, 1999, 17(12): 2612-2632. DOI: 10.1109/50.809684

    [23]

    SOOUDI E, AHMADI V, SOROOSH M. A versatile HSPICE electro-opto-thermal circuit model for vertical-cavity surface-emitting lasers[C]//2006 IEEE International Conference on Semiconductor Electronics. New York, USA: IEEE Press, 2006: 866-870.

    [24]

    ENTEZAM S, ZARIFKAR A, SHEIKHI M H. Thermal equivalent circuit model for coupled-cavity surface-emitting lasers[J]. IEEE Journal of Quantum Electronics, 2015, 51(4): 2400108.

    [25]

    DESGREYS P, KARRAY M, CHARLOT J, et al. Opto-electro-thermal model of a VCSEL array using VHDL-AMS[C]//Proceedings of the 2002 IEEE International Workshop on Behavioral Modeling and Simulation. New York, USA: IEEE Press, 2002: 123-126.

    [26]

    CHANG Q, SHI X Zh, WANG G F, et al. A new circuit-level thermal model of vertical-cavity surface-emitting lasers[C]//2009 Second International Conference on Intelligent Computation Technology and Automation. New York, USA: IEEE Press, 2009: 937-940.

    [27]

    NAKWASKI W, OSINSKI M. Thermal properties of etched-well surface-emitting semiconductor lasers[J]. IEEE Journal of Quantum Electronics, 1991, 27(6): 1391-1401. DOI: 10.1109/3.89956

    [28]

    NAKWASI W, OSINSKI M. On the thermal resistance of vertical-cavity surface emitting lasers[J]. Optical and Quantum Electronics, 1997, 29(9): 883-892. DOI: 10.1023/A:1018525616214

    [29]

    MIEYEVILLE F, JACQUEMOD G, GAFFIOT F, et al. A behavioural opto-electro-thermal VCSEL model for simulation of optical links[J]. Sensors and Actuators, 2001, A88(3): 209-219.

    [30]

    BAVEJA P P, KOGEL B, WESTBERGH P, et al. Impact of device parameters on thermal performance of high-speed oxide-confined 850 nm VCSELs[J]. IEEE Journal of Quantum Electronics, 2012, 48(1): 17-26. DOI: 10.1109/JQE.2011.2176554

    [31]

    OSINSKI M, NAKWASKI W. Thermal analysis of closely-packed two-dimensional etched-well surface-emitting laser arrays[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1995, 1(2): 681-696. DOI: 10.1109/2944.401258

    [32]

    BOIKO D L, GUERRERO G, KAPON E. Thermoelectrical model for vertical cavity surface emitting lasers and arrays[J]. Journal of Applied Physics, 2006, 100(10): 103102. DOI: 10.1063/1.2386941

    [33]

    CHOI J H, WANG L, BI H, et al. Effects of thermal-via structures on thin-film VCSELs for fully embedded board-level optical interconnection system[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(5): 1060-1065. DOI: 10.1109/JSTQE.2006.881903

    [34]

    LEE H K, SONG Y M, LEE Y T, et al. Thermal analysis of asymmetric intracavity-contacted oxide-aperture VCSELs for efficient heat dissipation[J]. Solid-State Electronics, 2009, 53(10): 1086-1091. DOI: 10.1016/j.sse.2009.06.005

    [35]

    JEONG H J, CHOQUETTE K. Thermal modeling of transferred VCSELs[C]//2013 IEEE Photonics Conference. New York, USA: IEEE Press, 2013: 248-249.

    [36]

    UEMURA T, NAGASHIMA K, NISHIMURA N, et al. Thermal design of 28 Gb/s×24-channel CDR-integrated VCSEL-based transceiver module[C]//2016 IEEE CPMT Symposium Japan. New York, USA: IEEE Press, 2016: 79-82.

    [37]

    FORMAN C, LEE S, YOUNG E, et al. Continuous-wave operation of m-plane GaN-based vertical-cavity surface-emitting lasers with a tunnel junction intracavity contact[J]. Applied Physics Letters, 2018, 112(11): 111106. DOI: 10.1063/1.5007746

    [38]

    ZHANG J W, NING Y Q, ZHANG X, et al. Improved performances of 850 nm vertical cavity surface emitting lasers utilizing the self-planar mesa structure[J]. Optics & Laser Technology, 2014, 56(5): 343-347.

    [39]

    MEI Y, WENG G E, ZHANG B P, et al. Quantum dot vertical-cavity surface-emitting lasers covering the green gap[J]. Light: Science & Applications, 2017, 6(1): e16199.

    [40]

    FANG T X, CUI B F, HAO Sh, et al. The simulation of thermal characteristics of 980 nm vertical cavity surface emitting lasers[J]. Journal of Semiconductors, 2018, 39(2): 024001. DOI: 10.1088/1674-4926/39/2/024001

    [41]

    WANG J H, SAVIDIS L, FRIEDMAN E. Thermal analysis of oxide-confined VCSEL arrays[J]. Microelectronics Journal, 2011, 42(5): 820-825. DOI: 10.1016/j.mejo.2010.11.005

    [42]

    XUN M, XU Ch, XIE Y Y, et al. Modal properties of 2-D implant-defined coherently coupled vertical-cavity surface-emitting laser array[J]. IEEE Journal of Quantum Electronics, 2015, 51(1): 2600106.

    [43]

    XUN M, PAN G Zh, ZHAO Zh Zh, et al. Analysis of thermal properties of 940 nm vertical cavity surface emitting laser arrays[J]. IEEE Transactions on Electron Devices, 2020, 68(1): 158-163.

    [44] 史晶晶, 秦莉, 宁永强, 等. 850 nm垂直腔面发射激光器列阵[J]. 光学精密工程, 2012, 20(1): 17-23.

    SHI J J, QIN L, NING Y Q, et al. 850 nm vertical cavity surface-emitting laser arrays[J]. Optics and Precision Engineering, 2012, 20(1): 17-23 (in Chinese).

    [45]

    LI W, QI Y X, LIU S P, MA X Y. High power density and temperature stable vertical-cavity surface-emitting laser with a ring close packing structure[J]. Optics and Laser Technology, 2020, 132(3): 106510.

    [46]

    HAGHIGHI N, MOSER P, ZORN M, et al. 19-element 2D top-emitting VCSEL arrays[J]. Journal of Lightwave Technology, 2021, 39(1): 186-192. DOI: 10.1109/JLT.2020.3023709

    [47]

    HEUSER T, PFLUGER M, FISCHER I, et al. Developing a photonic hardware platform for brain-inspired computing based on 5×5 VCSEL arrays[J]. Journal of Physics: Photonics, 2020, 2(4): 044002. DOI: 10.1088/2515-7647/aba671

    [48]

    CHOQUETTE K D, SCHNEIDER R P, LEAR K L, et al. Low threshold voltage vertical-cavity lasers fabricated by selective oxidation[J]. Electronics Letters, 1994, 30(24): 2043-2044. DOI: 10.1049/el:19941421

    [49]

    ANGELOS C, HINCKLEY S, MICHALZIK R, et al. Simulation of current spreading in bottom-emitting vertical cavity surface emitting lasers for high-power operation[J]. Proceedings of the SPIE, 2004, 5277: 261-272. DOI: 10.1117/12.522899

    [50] 佟存柱, 韩勤, 彭红玲, 等. 氧化限制型垂直腔面发射激光器串联电阻分析[J]. 半导体学报, 2005, 15(7): 1459-1463.

    TONG C Zh, HAN Q, PENG H L, et al. Annlysis of series sesistance of sxide-aperture confined vertical-cavity surface-emitting laser[J]. Chinese Journal of Semiconductors, 2005, 15(7): 1459-1463(in Chinese).

    [51]

    XU D W, YOON S F, TONG C Z, et al. Influence of oxide aperture on the properties of 1.3 μm InAs-GaAs quantum-dot VCSELs[C]//2008 IEEE Photonics Global@Singapore. New York, USA: IEEE Press, 2008: 1-3.

    [52] 刘迪, 宁永强, 秦莉, 等. 氧化孔径对高功率垂直腔面发射激光器温升的影响[J]. 中国激光, 2012, 39(5): 0502005.

    LIU D, NING Y Q, QIN L, et al. Effect of oxide aperture on temperature rise in high power vertical-cavity surface-emitting laser[J]. Chinese Journal of Lasers, 2012, 39(5): 0502005(in Chinese).

    [53]

    PENG Ch Y, TSAO K, CHENG H T, et al. Investigation of the current influence on near-field and far-field beam patterns for an oxide-confined vertical-cavity surface-emitting laser[J]. Optics Express, 2020, 28(21): 30748-30759. DOI: 10.1364/OE.397878

    [54]

    LIAO W Y, LI J, LI Ch Ch, et al. Oxide-aperture-dependent output characteristics of circularly symmetric VCSEL structure[J]. Chinese Physics, 2020, B29(2): 024201.

    [55]

    BRAVE A, HEGBLOM E. Variable emission area design for a vertical-cavity surface-emitting laser array: US11482839B2[P]. 2022-12-25.

    [56]

    CZYSZANOWSKI T, SARZALA R, DEMS M, et al. Spatial-mode discrimination in guided and antiguided arrays of long-wavelength VCSELs[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(5): 1702010.

    [57]

    ZHONG Ch Y, ZHANG X, LIU D, et al. Enhanced thermal stability of VCSEL array by thermoelectric analysis-based optimization of mesas distribution[J]. Chinese Physics, 2017, B26(6): 064204.

    [58]

    ZHONG Ch Y, ZHANG X, HOFMANN W, et al. Low thermal crosstalk 808 nm VCSEL arrays with nonlinear mesa configuration[J]. IEEE Photonics Journal, 2018, 10(6): 1504608.

    [59]

    LIU Y Y, HUANG Y W, ZHONG Ch Y, et al. VCSEL array thermal-distribution optimized by mesas rearrangement[J]. Optik, 2019, 186(6): 443-448.

    [60]

    QI Y X, LI W, LIU S P, et al. Optimized arrangement of vertical cavity surface emitting laser arrays to improve thermal characteristics[J]. Journal of Applied Physics, 2019, 126(19): 191101.

    [61]

    NING Y, JIE Y, YE T. Thermal chips layout method in MCM based on an improved particle swarm algorithm[C]//2019 Chinese Control and Decision Conference (CCDC). New York, USA: IEEE Press, 2019: 537-541.

    [62]

    PU G Q, YI L L, ZHANG L, et al. Genetic algorithm-based fast real-time automatic mode-locked fiber laser[J]. IEEE Photonics Technology Letters, 2019, 32(1): 7-10.

  • 期刊类型引用(5)

    1. 杨宇,杨发展,姜芙林,黄珂,刘朝伟. 激光加工微织构研究进展及其在改善摩擦学特性方面的功能分析. 工具技术. 2023(07): 3-12 . 百度学术
    2. 邹云,桑振宽,李大磊,李阳. 304不锈钢水射流强化工艺的多目标优化设计. 表面技术. 2018(02): 25-29 . 百度学术
    3. 张冲,王冠,杨志刚,刘赞丰. 脉冲光纤激光切割连杆裂解槽工艺参量优化. 激光技术. 2018(03): 422-426 . 本站查看
    4. 符永宏,邹国文,黄婷,康正阳,李海波,郑峰. Cr12mov模具钢表面激光毛化工艺及力学性能研究. 应用激光. 2018(01): 76-80 . 百度学术
    5. 凌步军,刘新金,倪振兴,潘文金,贾明明. 激光毛化表面微形貌成形工艺实验研究. 现代制造技术与装备. 2017(11): 30-33 . 百度学术

    其他类型引用(4)

图(24)
计量
  • 文章访问数:  46
  • HTML全文浏览量:  6
  • PDF下载量:  8
  • 被引次数: 9
出版历程
  • 收稿日期:  2024-01-03
  • 修回日期:  2024-03-11
  • 发布日期:  2024-11-24

目录

    /

    返回文章
    返回