Laser guidance radar anti-high-repetition-frequency jamming technology based on random repetition-frequency signal
-
摘要: 为了能有效对抗高重频干扰,在分析高重频干扰破坏激光制导雷达信号处理机理的基础上,采用了随机重频照射激光波形,并利用激光目标指示器、目标和探测器的先验距离、速度特征,提出了基于自适应交叠波门的高重频干扰信号排查和鉴别方法,有效控制了重频干扰对目标捕获环节的影响,形成一套从波形设计到信号处理、目标捕获的端到端的抗高重频干扰解决方案,并进行了理论分析和实验验证。结果表明,在不同干扰场景下,有效捕获目标的时间均低于0.2 s,捕获时间在亚秒量级,与无干扰背景下目标典型捕获时间相当。此技术可有效对抗数十赫兹到250 kHz的固定/随机重频干扰,有利于提高制导武器对抗重频干扰的能力。Abstract: In order to effectively counteract high-repetition-frequency jamming, a solution based on the analysis of the destructive mechanism of high-repetition-frequency jamming on laser guided radar signal processing was developed. The solution involves the use of randomly modulated laser waveforms and incorporates prior knowledge of the distance and velocity characteristics of the laser target indicator, target, and detector. A high-repetition-frequency jamming signal identification and discrimination method was designed based on adaptive overlapping wave gates, effectively controlling the impact of repetition-frequency jamming on the target acquisition process. It provided an end-to-end solution for combating high-frequency jamming, from waveform design to signal processing to effective target capture. The proposed solution was theoretically analyzed and experimentally verified. The results show that in different interference scenarios, the effective capture time is consistently below 0.2 s. The effective capture time is in the sub-second range, comparable to the typical capture time under no jamming background. This technology can effectively counteract fixed/random frequency jamming ranging from tens of Hertz to 250 kHz, enhancing the capability of guided weapons to counter high-repetition-frequency jamming.
-
-
表 1 干扰场景参数设置
Table 1 Jamming scenario parameters configuration
jamming types transmitted signal jamming frequency/kHz experiment fixed frequency random frequency distributed between 20 Hz~30 Hz 0.02, 0.5, 10, 100, 200, 250 10000 trials per frequency -
[1] 王狂飙. 激光制导武器的现状、关键技术与发展[J]. 红外与激光工程, 2007, 36(5): 651-655. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ200705019.htm WANG K B. Status quo, key technology and development of laser guided weapon[J]. Infrared and Laser Engineering, 2007, 36(5): 651-655(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ200705019.htm
[2] 童忠诚, 孙晓泉, 杨希伟, 等. 激光制导武器高重频干扰技术仿真研究[J]. 弹道学报, 2008, 20(1): 106-110. https://www.cnki.com.cn/Article/CJFDTOTAL-DDXB200801029.htm TONG Zh Ch, SUN X Q, YANG X W, et al. Simulation of laser-barrage-jamming for laser-guided weapon[J]. Journal of Ballistics, 2008, 20(1): 106-110(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DDXB200801029.htm
[3] 蒋耀庭, 潘丽娜. 激光有源干扰及其发展现状[J]. 激光技术, 2004, 28(4): 438-441. http://www.jgjs.net.cn/article/id/14194 JIANG Y T, PAN L N. Active laser interference and its present developmen[J]. Laser Technology, 2004, 28(4): 438-441(in Chinese). http://www.jgjs.net.cn/article/id/14194
[4] 王伟柱, 刘志国, 王仕成, 等. 激光角度欺骗和高重频干扰效果仿真研究[J]. 电光与控制, 2018, 25(6): 11-15. https://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ201806004.htm WANG W Zh, LIU Zh G, WANG Sh Ch, et al. Simulation research on effect of laser angle deception and high-repetition-frequency jamming[J]. Electronics Optics & Control, 2018, 25(6): 11-15(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ201806004.htm
[5] 宋振之, 韩道文, 王宇, 等. 激光高重频干扰半主动制导导弹的作战运用影响研究[J]. 电光与控制, 2022, 29(4): 12-15. https://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ202204003.htm SONG Zh Zh, HAN D W, WANG Y, et al. Influence of high-repetition-frequency laser jamming on semi-active guided missile in operational application[J]. Electronics Optics & Control, 2022, 29(4): 12-15(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ202204003.htm
[6] 赵乾, 刘志国, 王仕成, 等. 高重频干扰对激光解码识别过程的影响[J]. 激光技术, 2014, 38(4): 565-568. DOI: 10.7510/jgjs.issn.1001-3806.2014.04.026 ZHAO Q, LIU Zh G, WANG Sh Ch, et al. Effect of high repetition frequency on laser decoding recognition process[J]. Laser Technology, 2014, 38(4): 565-568(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2014.04.026
[7] 邱雄, 刘志国, 王仕成. 半主动激光制导武器系统的高重频干扰有效概率研究[J]. 红外与激光工程, 2019, 48(10): 76-82. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201910011.htm QIU X, LIU Zh G, WANG Sh Ch. Research on effective probability of high-repetition interference in semi-active laser guided weapon system[J]. Infrared and Laser Engineering, 2019, 48(10): 76-82(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201910011.htm
[8] 楚振锋, 王德飞, 王金峰, 等. 一种基于波门诱偏的激光导引头干扰策略[J]. 激光技术, 2016, 40(6): 779-781. DOI: 10.7510/jgjs.issn.1001-3806.2016.06.001 CHU Zh F, WANG D F, WANG J F, et al. A laser seeker jamming strategy based on wave gate decoy[J]. Laser Technology, 2016, 40(6): 779-781(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2016.06.001
[9] 王云萍, 张海洋, 郑星元, 等. 高重频激光对激光制导武器的干扰机理分析[J]. 激光技术, 2014, 38(1): 21-25. DOI: 10.7510/jgjs.issn.1001-3806.2014.01.005 WANG Y P, ZHANG H Y, ZHEN X Y, et al. Analysis of interfe-rence mechanism of high-frequency laser to laser guided weapons[J]. Laser Technology, 2014, 38(1): 21-25(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2014.01.005
[10] 张帅, 刘志国, 王仕成, 等. 高重频激光干扰制导武器建模与仿真评估研究[J]. 红外与激光工程, 2016, 45(3): 135-140. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201603020.htm ZHANG Sh, LIU Zh G, WANG Sh Ch, et al. Research on modeling and simulation of high repetition laser jamming laser guidance wea-pon[J]. Infrared and Laser Engineering, 2016, 45(3): 135-140(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201603020.htm
[11] 宋振之, 韩道文, 吴中伟, 等. 高重频激光对激光半主动制导导弹干扰效能仿真分析[J]. 电光与控制, 2023, 30(2): 41-45. https://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ202302008.htm SONG Zh Zh, HAN D W, WU Zh W, et al. Simulation analysis of interference efficiency of high-repetition-rate laser to semi-active laser guided missile[J]. Electronics Optics & Control, 2023, 30(2): 41-45 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ202302008.htm
[12] 徐炜波, 刘志国, 王仕成, 等. 高重频激光对激光导引头干扰过程的建模研究[J]. 激光与红外, 2021, 51(1): 29-33. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202101006.htm XU W B, LIU Zh G, WANG Sh Ch, et al. Modeling the interfe-rence process of laser seeker with high-repetition laser[J]. Laser & Infrared, 2021, 51(1): 29-33(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202101006.htm
[13] 张腾飞, 张合新, 惠俊军, 等. 激光制导武器发展及应用概述[J]. 电光与控制, 2015, 22(10): 62-67. https://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ201510015.htm ZHANG T F, ZHANG H X, HUI J J, et al. A review on development and applicationof laser-guided weapons[J]. Electronics Optics & Control, 2015, 22(10): 62-67(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ201510015.htm
[14] 陈成, 赵良玉, 马晓平. 激光导引头关键技术发展现状综述[J]. 激光与红外, 2019, 49(2): 131-136. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201902002.htm CHEN Ch, ZHAO L Y, MA X P. State-of-art of key technological issues of laser seekers[J]. Laser & Infrared, 2019, 49(2): 131-136(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201902002.htm
[15] 薛建国, 王娟锋, 雷萍. 一种半主动激光制导双脉冲伪随机码设计[J]. 弹箭与制导学报, 2018, 38(1): 11-13. https://www.cnki.com.cn/Article/CJFDTOTAL-DJZD201801003.htm XUE J G, WANG J F, LEI P. Design of double pulse pseudo random code for a semi-active laser guidance[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2018, 38(1): 11-13(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DJZD201801003.htm
[16] 张艺凡, 张春熹, 王鹏, 等. 激光脉冲编码抗有源干扰效果研究[J]. 激光与红外, 2019, 49(1): 99-104. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201901018.htm ZHANG Y F, ZHANG Ch X, WANG P, et al. Research on anti-active-jamming effect of laser pulse coding[J]. Laser & Infrared, 2019, 49(1): 99-104(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201901018.htm
[17] 邱雄, 刘志国, 王仕成. 半主动激光制导武器的伪随机编码[J]. 中国激光, 2019, 46(8): 0801008. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201908008.htm QIU X, LIU Zh G, WANG Sh Ch. Pseudo-random coding of semi-active laser-guided weapon[J]. Chinese Journal of Lasers, 2019, 46(8): 0801008(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201908008.htm
[18] 吴建军, 王金玉. 一种激光导引头抗高重频干扰的方法[J]. 激光与红外, 2007, 37(10): 1081-1084. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW200710016.htm WU J J, WANG J Y. A method of counter high-frequency laser jamming of laser seeker[J]. Laser & Infrared, 2007, 37(10): 1081-1084(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW200710016.htm
[19] 陈勇, 冉景砚, 吕霞付. 一种激光半主动制导抗高重频干扰的改进方法[J]. 激光与红外, 2012, 42(6): 678-681. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201206019.htm CHEN Y, RAN J Y, LÜ X F. Improving method to counter high repetition jamming in laser semi-active guided systems[J]. Laser & Infrared, 2012, 42(6): 678-681(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201206019.htm
[20] 曹晓荷, 朱斌, 尚建蓉, 等. 激光制导伪随机编码信号解码技术[J]. 激光技术, 2021, 45(2): 155-161. DOI: 10.7510/jgjs.issn.1001-3806.2021.02.005 CAO X H, ZHU B, SHANG J R, et al. Decoding technique of laser-guided pseudo-random coded signals[J]. Laser Technology, 2021, 45(2): 155-161(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2021.02.005