高级检索

用于无人机探测系统的红外小目标检测算法

张明淳, 牛春晖, 刘力双, 刘洋

张明淳, 牛春晖, 刘力双, 刘洋. 用于无人机探测系统的红外小目标检测算法[J]. 激光技术, 2024, 48(1): 114-120. DOI: 10.7510/jgjs.issn.1001-3806.2024.01.018
引用本文: 张明淳, 牛春晖, 刘力双, 刘洋. 用于无人机探测系统的红外小目标检测算法[J]. 激光技术, 2024, 48(1): 114-120. DOI: 10.7510/jgjs.issn.1001-3806.2024.01.018
ZHANG Mingchun, NIU Chunhui, LIU Lishuang, LIU Yang. Infrared small target detection algorithm for UAV detection system[J]. LASER TECHNOLOGY, 2024, 48(1): 114-120. DOI: 10.7510/jgjs.issn.1001-3806.2024.01.018
Citation: ZHANG Mingchun, NIU Chunhui, LIU Lishuang, LIU Yang. Infrared small target detection algorithm for UAV detection system[J]. LASER TECHNOLOGY, 2024, 48(1): 114-120. DOI: 10.7510/jgjs.issn.1001-3806.2024.01.018

用于无人机探测系统的红外小目标检测算法

详细信息
    通讯作者:

    牛春晖, niuchunhui@bistu.edu.cn

  • 中图分类号: TP391;TN215

Infrared small target detection algorithm for UAV detection system

  • 摘要: 为了解决无人机探测系统中目标检测算法在不同场景下适用性差、虚警率高的问题, 采用可应用于不同复杂背景的红外小目标检测算法, 设计了一种基于现场可编程门阵列与数字信号处理器架构的无人机探测系统。首先利用双边滤波算法平滑背景, 保留目标区域边缘; 再使用改进的多尺度顶帽算法进行目标增强和背景抑制, 来提高目标区域与周围区域的差异对比; 最后使用基于最大值和平均值的自适应阈值分割方法提取目标。结果表明, 实验测得系统的检测率为98.15%, 整体时延为33.33 ms, 与现有典型红外小目标检测算法相比, 该算法的信噪比增益和背景抑制因子分别平均提高6.8倍和7.44倍, 有效地抑制了背景, 增强了目标。该算法能有效解决复杂背景下的红外小目标检测问题, 对提高无人机探测系统在不同场景下的适用能力与检测能力是有帮助的。
    Abstract: In order to solve the problem of poor applicability and high false alarm rate of target detection algorithm in unmanned aerial vehicle (UAV) detection systems in different scenarios, a UAV detection system based on a field-programmable gate array(FPGA) and digital signal processor architecture was designed by using infrared small target detection algorithm which could be applied to different complex backgrounds. Firstly, a bilateral filter algorithm was used to smooth the background and preserve the edge of the target region. Then, an improved multi-scale top-hat algorithm was adopted to enhance the target and suppress the background to improve the contrast difference between the target and the surrounding area. Finally, the adaptive threshold segmentation method based on maximum and average values was used to extract the target. The experimental results show that the detection rate of the system is 98.15%, and the overall delay is 33.33 ms. Compared with the existing typical infrared small target detection algorithms, the signal-to-noise ratio gain and background suppression factor of this proposed algorithm are increased by 6.8 times and 7.44 times on average, respectively, which effectively suppresses the background and enhances the target. The algorithm can effectively solve the problem of infrared small target detection in complex backgrounds, and it is helpful to improve the applicable ability and detection ability of the UAV detection system in different scenarios.
  • 图  1   系统结构框图

    Figure  1.   Block diagram of system structure

    图  2   算法流程图

    Figure  2.   Algorithm flow chart

    图  3   结构算子之间的关系

    Figure  3.   Relationships between structural operators

    图  4   算法实现效果

    Figure  4.   Effect of algorithm

    图  5   5种算法处理后的序列图像

    Figure  5.   Sequence image processed by five algorithms

    图  6   同一阈值处理后的序列图像

    Figure  6.   Sequence image after same threshold processing

    图  7   不同算法的ROC曲线

    Figure  7.   ROC curves of different algorithms

    图  8   外场测试场景

    Figure  8.   Outdoor test scenario

    图  9   单帧检测效果

    Figure  9.   Single frame detection effect

    图  10   多帧检测效果

    Figure  10.   Multi-frames detection effect

    图  11   目标检测时间

    Figure  11.   Target detection time

    表  1   序列图像描述

    Table  1   Sequential image description

    image sequence image size target number target size image background (random background noise and system interference)
    Seq.1 256×256 1 3×3 complex cloud background
    Seq.2 256×256 1 3×3 mountain background
    Seq.3 256×256 1 3×3 forest background
    Seq.4 256×256 2 3×3 sky multiple targets
    下载: 导出CSV

    表  2   5种算法在前3组场景下的SNRG与BSF值

    Table  2   Sequence images describe the SNRG and BSF values of the five algorithms in the first three sets of scenes

    evaluation index image sequence LCM top-hat MPCM LoG this paper
    SNRG Seq.1 7.78 231.21 112.09 317.64 1517.63
    Seq.2 0.38 2.61 9.85 8.04 38.79
    Seq.3 0.05 2.29 9.04 5.15 16.21
    BSF Seq.1 0.98 6.73 0.50 7.36 26.53
    Seq.2 0.93 2.07 2.81 2.94 25.72
    Seq.3 0.83 1.42 3.43 1.56 6.79
    下载: 导出CSV
  • [1] 屈旭涛, 庄东晔, 谢海斌. "低慢小"无人机探测方法[J]. 指挥控制与仿真, 2020, 42(2): 128-135. DOI: 10.3969/j.issn.1673-3819.2020.02.024

    QU X T, ZHUANG D Y, XIE H B. Detection methods for low-slow-small (LSS) UAV [J]. Command Control and Simulation, 2020, 42(2): 128-135(in Chinese). DOI: 10.3969/j.issn.1673-3819.2020.02.024

    [2] 朱金辉, 张宝华, 谷宇, 等. 基于双邻域对比度的红外小目标检测算法[J]. 激光技术, 2021, 45(6): 794-798. DOI: 10.7510/jgjs.issn.1001-3806.2021.06.020

    ZHU J H, ZHANG B H, GU Y, et al. Infrared small target detection algorithm based on double neighborhood contrast[J]. Laser Technology, 2021, 45(6): 794-798(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2021.06.020

    [3] 李丹. 红外告警系统中的目标检测算法研究[D]. 西安: 西安电子科技大学, 2011: 1-67.

    LI D. Research on target detection algorithm in infrared warning system[D]. Xi'an: Xidian University, 2011: 1-67(in Chinese).

    [4] 胡文, 王小华, 朱怀毅. LNSST域灰度突变度的红外与可见光图像融合[J]. 红外技术, 2018, 40(6): 563-568.

    HU W, WANG X H, ZHU H Y. Electro-optic and infrared and visible image fusion controlling the grayscale mutation of LNSST region[J]. Infrared Technology, 2018, 40(6): 563-568(in Chinese).

    [5]

    PAN M S, TANG J T, YANG X L. An adaptive median filter algorithm based on B-spline function[J]. International Journal of Automation & Computing, 2011, 8(1): 92-99.

    [6] 赵东, 周慧鑫, 于君娜, 等. 复杂天空背景下的红外弱小目标跟踪[J]. 强激光与粒子束, 2018, 30(6): 27-34.

    ZHAO D, ZHOU H X, YU J N, et al. Infrared dim target tracking in complex sky background[J]. High Power Laser and Particle Beams, 2018, 30(6): 27-34(in Chinese).

    [7]

    HAN J H, LIANG K, ZHOU B, et al. Infrared small target detection utilizing the multiscale relative local contrast measure[J]. IEEE Geoscience & Remote Sensing Letters, 2018, 15(4): 612-616.

    [8] 刘炜, 牛誉霏, 肖龙龙, 等. 红外焦平面阵列及星载红外成像系统的发展[J]. 红外, 2021, 42(11): 15-24.

    LIU W, NIU Y F, XIAO L L, et al. Development of infrared focal plane array and space-borne infrared imaging system[J]. Infrared, 2021, 42(11): 15-24(in Chinese).

    [9] 王云杰, 王艳林, 夏润秋, 等. 大视场红外告警系统中目标高精度方位提取[J]. 激光技术, 2023, 47(2): 200-204. DOI: 10.7510/jgjs.issn.1001-3806.2023.02.007

    WANG Y J, WANG Y L, XIA R Q, et al. High precision target azimuth extraction in infrared wide field of view infrared alarm system[J]. Laser Technology, 2023, 47(2): 200-204(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2023.02.007

    [10] 孙秀峰. 基于国产多核DSP的红外弱小目标检测算法[J]. 数字技术与应用, 2020, 38(10): 80-82.

    SUN X F. Infrared dim targets detection based on the nationalization of multi-core DSP[J]. Digital Technology and Application, 2020, 38(10): 80-82 (in Chinese).

    [11] 热孜亚·艾沙, 艾斯卡尔·艾木都拉. 基于元学习的红外弱小点状目标跟踪算法[J]. 激光技术, 2021, 45(3): 396-404. DOI: 10.7510/jgjs.issn.1001-3806.2021.03.023

    RAZIYE E, ASKAR H. Infrared small target tracking algorithm based on meta-learning[J]. Laser Technology, 2021, 45(3): 396-404(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2021.03.023

    [12]

    GAO J Y, GUO Y L, LIN Z P, et al. Robust infrared small target detection using multiscale gray and variance difference measures[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(12): 5039-5052. DOI: 10.1109/JSTARS.2018.2877501

    [13]

    LIU X, LI X Y, LI L Y, et al. Dim and small target detection in multi-frame sequence using Bi-Conv-LSTM and 3D-Conv structure[J]. IEEE Access, 2021, 9(6): 135845-135855.

    [14] 洪存存, 王雪琨, 于文文, 等. 基于改进双边滤波的皮革缺陷检测[J]. 激光技术, 2021, 45(3): 373-377. DOI: 10.7510/jgjs.issn.1001-3806.2021.03.019

    HONG C C, WANG X K, YU W W, et al. Leather defect detection based on improved bilateral filtering[J]. Laser Technology, 2021, 45(3): 373-377(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2021.03.019

    [15]

    GHOSH S, NAIR P, CHAUDHURY K N. Optimized Fourier bila-teral filtering[J]. IEEE Signal Processing Letters, 2018, 25(10): 1555-1559.

    [16]

    ZHU Zh Y, LOU K, GE H L, et al. Infrared target detection based on Gaussian model and Hungarian algorithm[J]. Enterprise Information Systems, 2022, 16(10/11): 1573-1586.

    [17] 叶斌, 彭嘉雄. 基于形态学top-hat算子的小目标检测方法[J]. 中国图象图形学报, 2002, 7(7): 15-19.

    YE B, PENG J X. Small target detection method based on morpho-logy top-hat operator[J]. Journal of Image and Graphics, 2002, 7 (7): 15-19(in Chinese).

    [18]

    BAI X Zh, ZHOU F G. Analysis of new top-hat transformation and the application for infrared dim small target detection[J]. Pattern Recognition, 2009, 43(6): 2145-2156.

    [19] 白相志, 周付根, 解永春, 等. 新型top-hat变换及其在红外小目标检测中的应用[J]. 数据采集与处理, 2009, 24(5): 643-649.

    BAI X Zh, ZHOU F G, XIE Y Ch, et al. New top-hat transform and its application in infrared small target detection [J]. Data Acquisition and Processing, 2009, 24(5): 643-649.

    [20]

    CHEN C P, LI H, WEI Y T, et al. A local contrast method for small infrared target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 52(1): 574-581.

    [21]

    DU J M, LU H Zh, ZHANG L P, et al. A spatial-temporal feature-based detection framework for Infrared dim small target[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60(1): 1-12.

    [22] 刘闯, 杨小冈, 卢瑞涛, 等. 一种实用的空地红外时敏弱小目标检测方法[J]. 电光与控制, 2022, 29(8): 7-12.

    LIU Ch, YANG X G, LU R T, et al. A practical infrared time-sensitive dim target detection method for open space[J]. Electronics Optics & Control, 2022, 29(8): 7-12(in Chinese).

  • 期刊类型引用(5)

    1. 徐一翔,吕勇. 基于生成对抗网络的轻量化图像融合算法. 北京信息科技大学学报(自然科学版). 2024(03): 84-90 . 百度学术
    2. 刘皓皎,刘力双,张明淳. 基于YOLOv5改进的红外目标检测算法. 激光技术. 2024(04): 534-541 . 本站查看
    3. 郭明全,赵景服. YOLOv5-SATC:用于遥感图像目标检测的网络. 信息与电脑(理论版). 2024(15): 18-20 . 百度学术
    4. 吕培强. 电力搭载无人机轻量化应用模式策略研究. 科技创新与应用. 2024(36): 161-164 . 百度学术
    5. 李淼,陈诺,安玮,李博扬,凌强,李卫星. 面向事件相机探测无人机的双视图融合检测方法. 光电工程. 2024(11): 49-59 . 百度学术

    其他类型引用(0)

图(11)  /  表(2)
计量
  • 文章访问数:  7
  • HTML全文浏览量:  1
  • PDF下载量:  7
  • 被引次数: 5
出版历程
  • 收稿日期:  2022-12-18
  • 修回日期:  2023-02-08
  • 发布日期:  2024-01-24

目录

    /

    返回文章
    返回