Asymmetric Ge/SiGe coupled quantum well phase modulators
-
摘要: 为了研究和论证锗硅材料体系在器件的工艺制备和理论性能上的优势,拓展锗硅量子阱结构的应用范围,采用数值仿真结合实际器件制备的方法,进行了理论分析和实验验证,设计了一种基于Ge/SiGe非对称耦合量子阱材料的光学相位调制器,并在实验测试中验证了该理论的正确性。结果表明,当电场超过40 kV/cm时,该材料在1450 nm波长处可以达到最高0.01的电致折射率变化;经测试发现,实际制备的器件在1.5 V的反向偏置电压下, 实现了1530 nm波长处2.4×10-3的电致折射率变化,对应的VπLπ=0.048 V·cm,在同类型锗硅光调制器中达到了先进水平。该研究为硅基集成光调制器的进一步发展开辟了新的方向。Abstract: The SiGe material system demonstrates the advantages of device fabrication and performance, also the unique characteristic of Ge/SiGe multi-quantum well structure expends the application range. A design of optical integrated phase modulator based on asymmetric Ge/SiGe coupled quantum well (CQW) was proposed in this paper. According to comprehensively analysis of asymmetric Ge/SiGe CQW structure by numerical simulation, the theory was verified by implementing the fabrication and measurement. It indicates that the maximum electrorefractive index variation up to 0.01 can be achieved by using the designed asymmetric CQW, while the applied electrical field exceeds 40 kV/cm at wavelength of 1450 nm. Moreover, the fabricated device attains the electrorefractive index variation 2.4×10-3 with 1.5 V reverse bias voltage and optical wavelength 1530 nm, and the corresponding VπLπ is as low as 0.048 V·cm. The asymmetric Ge/SiGe CQW phase modulator exhibits superior performance in the same type of modulators based on SiGe, and offers new opportunities to further development of optical integrated silicon modulators.
-
-
表 1 锗硅调制器性能对比
Table 1 Comparison of this work and other reported Ge/SiGe modulators
structural composition bias voltage/V wavelength/nm index variation VπLπ/(V·cm) reference [23] Ge/Si0.15Ge0.85 MQW 8 1475 1.3×10-3 0.46 reference [24] 7×[7 nm Ge QW+1.5 nm Si0.15Ge0.85 inner barrier+7 nm Ge QW+26 nm Si0.15Ge0.85 outer barrier] 1.5 1420 2.3×10-3 0.046 our study 8×[6 nm Ge QW+2 nm Si0.17Ge0.83 inner barrier+12 nm Ge QW+12 nm Si0.15Ge0.85 outer barrier] 1.5 1530 2.4×10-3 0.048 -
[1] REED G T, MASHANOVICH G, GARDES F Y, et al. Silicon optical modulators[J]. Nature Photonics, 2010, 4(8): 518-526. DOI: 10.1038/nphoton.2010.179
[2] REED G T, JASON PNG C E. Silicon optical modulators[J]. Materials Today, 2005, 8(1): 40-50. DOI: 10.1016/S1369-7021(04)00678-9
[3] CHUNG S, NAKAI M, HASHEMI H. Low-power thermo-optic silicon modulator for large-scale photonic integrated systems[J]. Optics Express, 2019, 27(9): 13430-13459. DOI: 10.1364/OE.27.013430
[4] SUN J, KUMAR R, SAKIB M, et al. A 128 Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance tuning[J]. Journal of Lightwave Technology, 2019, 37(1): 110-115. DOI: 10.1109/JLT.2018.2878327
[5] BASAK J, LIAO L, LIU A Sh, et al. Developments in gigascale silicon optical modulators using free carrier dispersion mechanisms[J]. Advances in Optical Technologies, 2008, 2008(1): 1-10.
[6] YI H X, LONG Q F, TAN W, et al. Demonstration of low power penalty of silicon mach-zehnder modulator in long-haul transmission[J]. Optics Express, 2012, 20(25): 27562-27568. DOI: 10.1364/OE.20.027562
[7] LIU J F, BEALS M, POMERENE A, et al. Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators[J]. Nature Photonics, 2008, 2(7): 433-437. DOI: 10.1038/nphoton.2008.99
[8] EDWARDS E H, LEVER L, FEI E T, et al. Low-voltage broad-band electroabsorption from thin Ge/SiGe quantum wells epitaxially grown on silicon[J]. Optics Express, 2013, 21(1): 867-876. DOI: 10.1364/OE.21.000867
[9] DUMAS D C S, GALLACHER K, RHEAD S, et al. Ge/SiGe quantum confined stark effect electro-absorption modulation with low vol-tage swing at λ=1550 nm[J]. Optics Express, 2014, 22(16): 19284-19292. DOI: 10.1364/OE.22.019284
[10] CHEN H W, KUO Y H, BOWERS J E. 25 Gb/s hybrid silicon switch using a capacitively loaded traveling wave electrode[J]. Optics Express, 2010, 18(2): 1070-1075. DOI: 10.1364/OE.18.001070
[11] LIU L, van CAMPENHOUT J, ROELKENS G, et al. Carrier-injection-based electro-optic modulator on silicon-on-insulator with a heterogeneously integrated Ⅲ-Ⅴ microdisk cavity[J]. Optics Letters, 2008, 33(21): 2518-2520. DOI: 10.1364/OL.33.002518
[12] 李从午, 卞立安. 基于F-P谐振与SPP共振的石墨烯双模吸波体设计[J]. 激光技术, 2021, 45(4): 507-510. DOI: 10.7510/jgjs.issn.1001-3806.2021.04.015 LI C W, BIAN L A. Design of graphene double-mode absorber based on F-P resonance and SPP resonance[J]. Laser Technology, 2021, 45(4): 507-510(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2021.04.015
[13] LIU M, YIN X B, ULIN-AVILA E, et al. A graphene-based broadband optical modulator[J]. Nature, 2011, 474(7349): 64-67. DOI: 10.1038/nature10067
[14] QIU C Y, GAO W L, VAJTAI R, et al. Efficient modulation of 1.55 μm radiation with gated graphene on a silicon microring resonator[J]. Nano Letters, 2014, 14(12): 6811-6815. DOI: 10.1021/nl502363u
[15] GAN S, CHENG C T, ZHAN Y H, et al. A highly efficient thermo-optic microring modulator assisted by graphene[J]. Nanoscale, 2015, 7(47): 20249-20255. DOI: 10.1039/C5NR05084G
[16] XIONG C, PERNICE W H, TANG H X. Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing[J]. Nano Letters, 2012, 12(7): 3562-3568. DOI: 10.1021/nl3011885
[17] KITTLAUS E A, JONES W M, RAKICH P T, et al. Electrically driven acousto-optics and broadband non-reciprocity in silicon photonics[J]. Nature Photonics, 2020, 15(1): 43-52.
[18] WANG C, ZHANG M, CHEN X, et al. Integrated lithium niobate electro-optic modulators operating at cmos-compatible voltages[J]. Nature, 2018, 562(7725): 101-104. DOI: 10.1038/s41586-018-0551-y
[19] ZHANG M, BUSCAINO B, WANG C, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator[J]. Nature, 2019, 568(7752): 373-377. DOI: 10.1038/s41586-019-1008-7
[20] 成然, 黄帅, 徐强, 等. 铌酸锂量子器件研究进展[J]. 激光技术, 2022, 46(6): 722-728. DOI: 10.7510/jgjs.issn.1001-3806.2022.06.002 CHENG R, HUANG Sh, XU Q, et al. Research progress of lithium niobate quantum devices[J]. Laser Technology, 2022, 46(6): 722-728(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2022.06.002
[21] KUO Y H, LEE Y K, GE Y S, et al. Strong quantum-confined Stark effect in germanium quantum-well structures on silicon[J]. Nature, 2005, 437(7063): 1334-1336. DOI: 10.1038/nature04204
[22] WEINER J S, MILLER D A B, CHEMLA D S. Quadratic electro-optic effect due to the quantum-confined Stark effect in quantum wells[J]. Applied Physics Letters, 1987, 50(13): 842-844. DOI: 10.1063/1.98008
[23] FRIGERIO J, CHAISAKUL P, MARRIS-MORINI D, et al. Electro-refractive effect in Ge/SiGe multiple quantum wells[J]. Applied Physics Letters, 2013, 102(6): 1-4.
[24] FRIGERIO J, VAKARIN V, CHAISAKUL P, et al. Giant electro-optic effect in Ge/SiGe coupled quantum wells[J]. Scientific Reports, 2015, 5: 15398. DOI: 10.1038/srep15398