Effect of WC mass fraction on microstructure and properties of laser cladding Ni-based coatings
-
摘要: 为了研究WC质量分数对Ni60粉末激光熔覆涂层性能的影响,采用激光熔覆技术在Q235碳素工具钢上制备了WC+Ni60的复合涂层,并进行了理论分析和实验验证,取得了熔覆层几何形貌、稀释率、显微组织及硬度方面的数据。结果表明, 添加WC后, 涂层外观成形良好,在涂层硬度上有明显的提升效果;稀释率随着WC质量分数的增加整体呈现先升高后降低的趋势;当WC质量分数为0.4时为合适的粉末配比,不但能保证微观组织致密、枝晶尺寸均匀,也可避免颗粒和气孔对涂层质量造成的影响,并保证了2种熔覆材料融合性和涂层整体硬度。此研究结果对激光熔覆添加WC的Ni基复合涂层制备有一定指导作用。Abstract: In order to investigate the effect of WC mass fraction on the properties of Ni60 powder laser cladding coating, the WC and Ni60 composite coating was prepared on Q235 carbon tool steel by laser cladding technology, and the theoretical analysis and experimental verification were carried out. The date of geometrical morphology, dilution rate, microstructure and hardness of cladding layer were obtained. The results show that, after adding WC, the coating has good appearance and the hardness of coating can be improved obviously. The dilution rate increased firstly and then decreased with the increase of WC mass fraction. When the WC mass fraction is 0.4, the appropriate powder ratio can not only ensure the dense microstructure and uniform dendrite size, but also avoid the influence of particles and pores on the coating quality, and ensure the fusion of two coating materials and the overall hardness of the coating. The results of this study have a certain guiding role for the preparation of Ni-based composite with WC added by laser melting coating.
-
Keywords:
- laser technique /
- laser cladding /
- WC mass fraction /
- microstructure /
- hardness
-
-
表 1 Q235碳素钢化学成分(质量分数)
Table 1 Chemical composition of Q235 carbon steel (mass fraction)
type C Si Mn P S Fe Q235 0.15 0.15 0.25 0.12 0.11 balance 表 2 Ni60粉末化学成分(质量分数)
Table 2 Chemical composition of Ni60 powder (mass fraction)
type C Cr B Si Fe Ni Ni60 0.006~0.01 0.14~0.17 0.025~0.045 0.03~0.045 ≤0.15 balance 表 3 WC和Ni60成分配比(质量分数)
Table 3 WC and Ni60 component ratio (mass fraction)
type S1 S2 S3 S4 S5 WC 0 0.2 0.4 0.6 0.8 Ni60 1 0.8 0.6 0.4 0.2 表 4 稀释率计算结果
Table 4 Calculation results of dilution rate
case mass fraction of WC A1/mm2 A2/mm2 (A1+A2)/mm2 D/% S1 0.0 0.25 0.07 0.32 21.14 S2 0.2 0.29 0.04 0.33 13.16 S3 0.4 0.20 0.07 0.27 25.88 S4 0.6 0.34 0.05 0.39 12.22 S5 0.8 0.36 0.05 0.41 11.32 -
[1] 王悦, 李慧, 梁精龙, 等. Q235钢的腐蚀行为及表面防腐研究现状[J]. 电镀与涂饰, 2019, 38(11): 545-548. DOI: 10.19289/j.1004-227x.2019.11.008 WANG Y, LI H, LIANG J L, et al. Current status of research on corrosion behavior and surface corrosion protection of Q235 steel[J]. Electroplating & Finishing, 2019, 38(11): 545-548(in Chinese). DOI: 10.19289/j.1004-227x.2019.11.008
[2] WANG H Zh, CHENG Y H, YANG J Y, et al. Influence of laser remelting on organization, mechanical properties and corrosion resistance of Fe-based amorphous composite coating[J]. Surface and Coatings Technology, 2021, 414(3): 127081.
[3] HUANG G K, QU L, LU Y Zh, et al. Corrosion resistance improvement of 45 steel by Fe-based amorphous coating[J]. Vacuum, 2018, 153(3): 39-42.
[4] WANG H Zh, CHENG Y H, ZHANG X Ch, et al. Effect of laser scanning speed on microstructure and properties of Fe based amorphous/nanocrystalline cladding coatings[J]. Materials Chemistry and Physics, 2020, 250: 123091. DOI: 10.1016/j.matchemphys.2020.123091
[5] XI W Ch, SONG B X, WANG Z X, et al. Effect of laser re-melting on geometry and mechanical properties of YCF102 cladding layer[J]. Surface and Coatings Technology, 2021, 408: 126789. DOI: 10.1016/j.surfcoat.2020.126789
[6] WANG H Zh, CHENG Y H, YANG J Y, et al. Influence of laser remelting on organization, mechanical properties and corrosion resistance of Fe-based amorphous composite coating[J]. Surface and Coatings Technology, 2021, 414(3): 127081.
[7] CHEN W, XU L Y, HAO K D, et al. Additive manufacturing of 15-5PH/WC composites with the synergistic enhancement of strength and ductility[J]. Materials Science and Engineering, 2022, A840: 142926.
[8] ZHENG Zh H, LV J, LOU M, et al. Mechanical and tribological properties of WC incorporated Ti(C, N)-based cermets[J]. Ceramics International, 2022, 48(7): 10086-10095. DOI: 10.1016/j.ceramint.2021.12.218
[9] LU L W, FENG D R, WANG Y R, et al. Microstructure, wear resistance and electrochemical properties of spherical/non-spherical WC reinforced Inconel 625 superalloy by laser melting deposition[J]. Journal of Manufacturing Processes, 2022, 74(12): 413-422.
[10] CHEN H, LU Y Y, WU K H, et al. Effect of WC addition on TiC reinforced Fe matrix composites produced by laser deposition[J]. Surface and Coatings Technology, 2022, 434: 128185. DOI: 10.1016/j.surfcoat.2022.128185
[11] TAN Ch, HU J, SHI Q, et al. Enhanced hardness and toughness in WC/W2C-Ni-Cu composites fabricated by selective laser melting[J]. International Journal of Refractory Metals and Hard Materials, 2022, 105: 105805. DOI: 10.1016/j.ijrmhm.2022.105805
[12] 樊帅奇, 张蕾涛, 李海涛, 等. WC初始状态对激光熔覆Ni60/WC涂层组织及性能的影响[J]. 材料热处理学报, 2021, 42(6): 157-162. https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL202106020.htm FAN Sh Q, ZHANG L T, LI H T, et al. Effect of initial state of WC on microstructure and properties of laser cladding Ni60 /WC coatings[J]. Transactions of Materials and Heat Treatment, 2021, 42(6): 157-162(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL202106020.htm
[13] 罗俊威, 牛犇, 陈俊孚, 等. WC颗粒增强金属基复合耐磨材料制备工艺与性能研究[J]. 精密成形工程, 2020, 12(4): 126-131. https://www.cnki.com.cn/Article/CJFDTOTAL-JMCX202004016.htm LUO J W, NIU B, CHEN J F, et al. Preparation technology and properties of metal matrix composite wear-resistant materials reinforced by WC particles[J]. Journal of Netshape Forming Engineering, 2020, 12(4): 126-131(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JMCX202004016.htm
[14] 丁阳喜, 邬哲. 35CrMo钢表面激光熔覆Ni/WC-Y2O3熔覆层性能研究[J]. 表面技术, 2011, 40(5): 32-34. https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201105013.htm DING Y X, WU Zh. Research of properties of laser cladding on Ni/WC-Y2O3 surface of 35CrMo steel[J]. Surface Technology, 2011, 40(5): 32-34(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201105013.htm
[15] 李镭昌, 魏昕. 激光熔覆复合涂层WC对裂纹产生机理影响研究[J]. 激光技术, 2023, 47(1): 52-58. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.008 LI L Ch, WEI X. Study on the effect of laser cladding composite coating and its WC on crack formation mechanism[J]. Laser Technology, 2023, 47(1): 52-58(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2023.01.008
[16] 王开明, 雷永平, 魏世忠, 等. WC含量对激光熔覆Ni基WC复合涂层组织和性能的影响[J]. 材料热处理学报, 2016, 37(7): 172-179. https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201607028.htm WANG K M, LEI Y P, WEI Sh Zh, et al. Effect of WC content on microstructure and properties of laser cladding Ni-based WC composite coating[J]. Transactions of Materials and Heat Treatment, 2016, 37(7): 172-179(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201607028.htm
[17] HU Y J, WANG Z X, PANG M. Effect of WC content on laser cladding Ni-based coating on the surface of stainless steel[J]. Materials Today Communications, 2022, 31: 103357. DOI: 10.1016/j.mtcomm.2022.103357
[18] XIA Y L, CHEN H N, LIANG X D, et al. Circular oscillating laser melting deposition of nickel-based superalloy reinforced by WC: Microstructure, wear resistance and electrochemical properties[J]. Journal of Manufacturing Processes, 2021, 68(6): 1694-1704.
[19] 张海云, 张金, 朱磊, 等. WC含量对激光熔覆TC4涂层组织及性能的影响[J]. 热加工工艺, 2022, 51(8): 83-87. https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY202208019.htm ZHANG H Y, ZHANG J, ZHU L, et al. Effects of WC content on microstructure and properties of TC4 composite prepared by laser cladding[J]. Hot Working Technology, 2022, 51(8): 83-87(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY202208019.htm
[20] 李倩, 陈发强, 王茜, 等. 激光熔覆WC增强Ni基复合涂层的研究进展[J]. 表面技术, 2022, 51(2): 129-143. https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS202202012.htm LI Q, CHEN F Q, WANG Q, et al. Research progress of laser-cladding WC reinforced Ni-based composite coating[J]. Surface Technology, 2022, 51(2): 129-143(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS202202012.htm
[21] 张家诚, 江吉彬, 黄旭, 等. 碳纳米管含量对激光熔覆镍基复合涂层组织与性能的影响[J]. 中国激光, 2022, 49(2): 0202301. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ202202021.htm ZHANG J Ch, JIANG J B, HUANG X, et al. Effect of carbon nanotubes content on microstructure and properties of laser cladded Ni-based composite coating[J]. Chinese Journal Lasers, 2022, 49(2): 0202301(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ202202021.htm
[22] CAO J H, HOU Z B, GUO D W, et al. Morphology characteristics of solidification structure in high-carbon steel billet based on fractal theory[J]. Journal of Materials Science, 2019, 54(19): 12851-12862.
[23] WANG H, QU C, ZHENG Y, et al. Study on the effect of vibration on solidification structures in the vibration cast-rolling process[J]. Materialwissenschaft und Werkstofftechnik, 2021, 52(4): 452-459.
[24] ZHU H, LI Y, LI B, et al. Effects of low-temperature tempering on microstructure and properties of the laser-cladded AISI 420 martensitic stainless steel coating[J]. Coatings, 2018, 8: 451.
[25] 董月, 舒林森, 林冉. 激光熔覆Fe-Cr-Mo-Si合金涂层的组织与摩擦磨损性能[J]. 激光与光电子学进展, 2021, 58(19): 1914007. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202119032.htm DONG Y, SHU L S, LIN R. Microstructure and friction and wear properties of laser cladded Fe-Cr-Mo-Si alloy coating[J]. Laser & Optoelectronics Progress, 2021, 58(19): 1914007(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202119032.htm
[26] 张磊, 陈小明, 霍嘉翔, 等. 激光熔覆马氏体/铁素体涂层的组织与抗磨耐蚀性能[J]. 粉末冶金材料科学与工程, 2022, 27(2): 196-204. https://www.cnki.com.cn/Article/CJFDTOTAL-FMGC202202009.htm ZHANG L, CHEN X M, HUO J X, et al. Microstructure and wear-corrosion resistance performance of laser cladding martensite/ferrite coating[J]. Materials Science and Engineering of Powder Metallurgy, 2022, 27(2): 196-204(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FMGC202202009.htm
[27] BAO Y F, GUO L P, ZHONG Ch H, et al. Effects of WC on the cavitation erosion resistance of FeCoCrNiB0.2 high entropy alloy coating prepared by laser cladding[J]. Materials Today Communications, 2021, 26(1): 102154.
[28] SIDDIQUI A A, DUBEY A K. Recent trends in laser cladding and surface alloying[J]. Optics & Laser Technology, 2021, 134(8): 106619.