Progress in simulation of type-Ⅱ superlattice infrared detectors based on the k·p method
-
摘要: 二类超晶格(T2SL)相对于其它制冷型红外探测器材料体系,具有成本低、均匀性高、工艺兼容性好等特点,且波长灵活可调、俄歇复合速率低。 k · p 方法作为一种常用且相对成熟的能带结构仿真技术,具有计算精度高、节省计算资源等特点,在T2SL的仿真中受到了广泛的关注。梳理了中波、长波、甚长波T2SL红外探测器的仿真进展,归纳了 k · p 方法的发展过程,以及该方法在T2SL红外探测器仿真中的进展和作用,直观展示 k · p 方法在超晶格仿真工作中的准确性与便利性;重点讨论了T2SL探测器的暗电流机制、量子效率和吸收光谱等性质,对T2SL红外探测器的研究和应用前景进行展望。采用包络函数近似下的 k · p 方法可以对超晶格材料的能带结构和电子性质进行较为准确的理论分析和仿真计算。Abstract: Compared with other cooled infrared detector material systems, type-Ⅱ superlattice (T2SL) has the characteristics of low cost, high uniformity, good process compatibility, flexible wavelength adjustability and lower Auger recombination rates. As a commonly used and relatively mature energy band structure simulation technology, the k · p method has the characteristics of high computational accuracy and saving computing resources, and has received widespread attention in the simulation of T2SL. The progress of simulation of mid-wave, long-wave, and very-long-wave T2SL infrared detectors was reviewed, and the development process of the k · p method was summarized, as well as the progress and role of the method in the simulation of T2SL infrared detectors, to more intuitively demonstrate the accuracy and convenience of the k · p method in superlattice simulation work. The dark current mechanisms, quantum efficiency, absorption spectra, and other properties of T2SL detectors were discussed with emphasis on the prospect of research and application of T2SL infrared detectors. The k · p method under the approximation of the envelope function can be used to perform accurate theoretical analysis and simulation calculations on the band structure and electronic properties of superlattice materials.
-
Keywords:
- detectors /
- type-Ⅱ superlattices /
- the k·p method /
- device simulation
-
感谢鲁东大学的马晓光教授、王子昊、杨露露、郭子仪、徐佩瑶、王晨璐、谢新宇及北京邮电大学的刘刚副教授、贾宝楠、孙懿凡、沈东培对本项工作的支持。
-
-
[1] SAI-HALASZ G A, TSU R, ESAKI L. A new semiconductor superlattice[J]. Applied Physics Letters, 1977, 30(12): 651-653. DOI: 10.1063/1.89273
[2] ESAKI L. InAs-GaSb superlattices-synthesized semiconductors and semimetals[J]. Journal of Crystal Growth, 1981, 52(1): 227-240.
[3] SMITH D L, MAILHIOT C. Proposal for strained type Ⅱ superlattice infrared detectors[J]. Journal of Applied Physics, 1987, 62(6): 2545-2548. DOI: 10.1063/1.339468
[4] DENTE G C, TILTON M L. Comparing pseudopotential predictions for InAs/GaSb superlattices[J]. Physical Review B, 2002, 66(16): 165307. DOI: 10.1103/PhysRevB.66.165307
[5] LIVNEH Y, KLIPSTEIN P C, KLIN O, et al. k·p model for the energy dispersions and absorption spectra of InAs/GaSb type-Ⅱ superlattices[J]. Physical Review B, 2012, 86(23): 235311. DOI: 10.1103/PhysRevB.86.235311
[6] NG S T, FAN W J, DANG Y X, et al. Comparison of electronic band structure and optical transparency conditions of InxGa1-xAs1-yNy/GaAs quantum wells calculated by 10-band, 8-band, and 6-band k·p models[J]. Physical Review B, 2005, 72(11): 115341. DOI: 10.1103/PhysRevB.72.115341
[7] 杨斌. 二类超晶格红外光电材料研究与应用[J]. 中国基础科学, 2019, 21(1): 52-54. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJB201901008.htm YANG B. Investigation and application of type Ⅱ superlattice infrared optoelectronic materials[J]. China Basic Science, 2019, 21(1): 52-54 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJB201901008.htm
[8] 尚林涛, 王静, 邢伟荣, 等. 红外探测Ⅱ类超晶格技术概述(一)[J]. 激光与红外, 2021, 51(4): 404-414. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202104002.htm SHANG L T, WANG J, XING W R, et al. Overview of infrared detection type-Ⅱ superlattice technology(I)[J]. Laser & Infrared, 2021, 51(4): 404-414 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202104002.htm
[9] BROWN G J, SZUMLOWICZ F, MAHALINGAM K, et al. Recent advances in InAs/GaSb superlattices for very long wavelength infrared detection[J]. Proceedings of the SPIE, 2003, 4999: 457-466. DOI: 10.1117/12.483916
[10] 王忆锋, 余连杰, 钱明. Ⅱ类超晶格甚长波红外探测器的发展[J]. 光电技术应用, 2011, 26(2): 45-52. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYG201102013.htm WANG Y F, YU L J, QIAN M. Development of type-Ⅱ superla-ttices for very long wavelength infrared detector[J]. Electro-optic Technology Application, 2011, 26(2): 45-52(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDYG201102013.htm
[11] WEI Y, RAZEGHI M. Modeling of type-Ⅱ InAs/GaSb superlattices using an empirical tight-binding method and interface engineering[J]. Physical Review B, 2004, 69(8): 428-433.
[12] 谢修敏, 徐强, 陈剑, 等. 锑化物Ⅱ类超晶格中远红外探测器的研究进展. 激光技术, 2020, 44(6): 688-694. DOI: 10.7510/jgjs.issn.1001-3806.2020.06.007 XIE X M, XU Q, CHEN J, et al. Research progress on antimonide based type-Ⅱ superlattices mid- and long-infrared detectors. Laser Technology, 2020, 44(6): 688-694(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2020.06.007
[13] 常发冉, 蒋志, 王国伟, 等. 锑化物超晶格长波红外焦平面探测器研究进展[J]. 中国科学: 物理学、力学、天文学, 2021, 51(2): 32-49. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK202102004.htm CHANG F R, JIANG Zh, WANG G W, et al. Progress of long wavelength infrared focal plane arrays based on antimonide compounds superlattice[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2021, 51(2): 32-49(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK202102004.htm
[14] 张莹, 刘塑. 国外红外焦平面探测器组件可靠性研究综述[J]. 红外技术, 2012, 34(3): 134-139. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201203001.htm ZHANG Y, LIU S. Reliability research on foreign infrared focal plane assembly[J]. Infrared technology, 2012, 34(3): 134-139 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201203001.htm
[15] 孙伟峰. InAs/(In)GaSb超晶格的能带结构和器件设计研究[D]. 哈尔滨: 哈尔滨工业大学, 2011: 195. SUN W F. Band structure and device design study of InAs/(In)GaSb superlattice[D]. Harbin: Harbin Institute of Technology, 2011: 195. (in Chinese).
[16] KLIPSTEIN P C, LIVNEH Y, GLOZMAN A, et al. Modeling InAs/GaSb and InAs/InAsSb superlattice infrared detectors[J]. Journal of Electronic Materials, 2014, 43(8): 2984-2990. DOI: 10.1007/s11664-014-3169-3
[17] PIKUS G E. Effect of deformation on the hole energy spectrum of germanium and silicon[J]. Soviet Physics-Solid State, 1960, 1: 1502-1517.
[18] 徐斯元. 基于高阶k·p方法的应变锗能带结构计算[D]. 西安: 西安电子科技大学, 2015: 88 XU S Y. Band structure calculation of strained germanium based on high-order k·p method[D]. Xi'an: Xidian University, 2015: 88(in Chinese).
[19] QIAO P F, MOU S, CHUANG S L. Electronic band structures and optical properties of type-Ⅱ superlattice photodetectors with interfacial effect[J]. Optics Express, 2012, 20(3): 2319-2334. DOI: 10.1364/OE.20.002319
[20] SCHEINERT M. Optical pumping: A possible approach towards a SiGe quantum cascade laser[DB/OL]. (2007-10-08)[2022-05-06]. https://123dok.net/document/yng7kn51-optical-pumping-possible-approach-towards-quantum-cascade-laser.html.
[21] BAHDER T B. Eight-band k·p model of strained zinc-blende crystals[J]. Physical Review B, 1990, 41(17): 11992. DOI: 10.1103/PhysRevB.41.11992
[22] WOOD D M, ZUNGER A. Successes and failures of the k·p method: A direct assessment for GaAs/AlAs quantum structures[J]. Physical Review B, 1996, 53(12): 7949-7963. DOI: 10.1103/PhysRevB.53.7949
[23] BAHDER T B. Analytic dispersion relations near the Γ point in strained zinc-blende crystals[J]. Physical Review B, 1992, 45(4): 1629-1637. DOI: 10.1103/PhysRevB.45.1629
[24] BASSANIF, PARRAVICINI G P, BALLINGER R A, et al. Electronic states and optical transitions in solids[J]. Physics Today, 1976, 29(3): 58-59. DOI: 10.1063/1.3023374
[25] BURT M G. The justification for applying the effective-mass approximation to microstructures[J]. Journal of Physics: Condensed Ma-tter, 1992, 4(32): 6651. DOI: 10.1088/0953-8984/4/32/003
[26] KLIPSTEIN P C. Operator ordering and interface-band mixing in the Kane-like Hamiltonian of lattice-matched semiconductor superlattices with abrupt interfaces[J]. Physical Review B, 2010, 81(23): 235314. DOI: 10.1103/PhysRevB.81.235314
[27] LIU C X, QI X L, ZHANG H, et al. Model Hamiltonian for topological insulators[J]. Physical Review B, 2010, 82(4): 045122. DOI: 10.1103/PhysRevB.82.045122
[28] SZMULOWICZ F. Derivation of a general expression for the momentum matrix elements within the envelope-function approximation[J]. Physical Review B, 1995, 51(3): 1613-1623. DOI: 10.1103/PhysRevB.51.1613
[29] CHANG Y C, JAMES R B. Saturation of intersubband transitions in P-type semiconductor quantum wells[J]. Physical Review B, 1989, 39(17): 12672-12681. DOI: 10.1103/PhysRevB.39.12672
[30] KLIPSTEIN P C, LIVNEH Y, KLIN O, et al. A k·p model of InAs/GaSb type Ⅱ superlattice infrared detectors[J]. Infrared Physics & Technology, 2013, 59(6): 53-59.
[31] RAZEGHI M, NGUYEN B M, DELAUNAY P Y, et al. State-of-the-art type Ⅱ antimonide-based superlattice photodiodes for infrared detection and imaging[J]. Proceedings of the SPIE, 2009, 7467: 181-193.
[32] RODRIGUEZ J B, CHRISTOL P, CHEVRIER F, et al. Optical characterization of symmetric InAs/GaSb superlattices for detection in the 3-5 μm spectral region[J]. Physica, 2005, E28(2): 128-133.
[33] HAUGAN H J, BROWN G J, SMULOWICZ F, et al. InAs/GaSb type-Ⅱ superlattices for high performance mid-infrared detectors[J]. Journal of Crystal Growth, 2005, 278(1/4): 198-202.
[34] HAO R T, XU Y Q, ZHOU Z Q, et al. MBE growth of very short period InAs/GaSb type-Ⅱ superlattices on (001) GaAs substrates[J]. Journal of Physics, 2007, D40(21): 6690-6693.
[35] 李俊斌, 李东升, 杨玉林, 等. 以色列SCD公司的Ⅲ-Ⅴ族红外探测器研究进展[J]. 红外技术, 2018, 40(10): 936-945. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201810003.htm LI J B, LI D Sh, YANG Y L et al. Ⅲ-Ⅴ semiconductor infrared detector research in SCD of israel[J]. Infrared Technology, 2018, 40(10): 936-945(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201810003.htm
[36] 胡锐, 邓功荣, 张卫锋, 等. nBn型InAs/GaSb Ⅱ类超晶格红外探测器光电特性研究[J]. 红外技术, 2014, 36(11): 863-867. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201411003.htm HU R, DENG G R, ZHANG W F, et al. Electrical and optical properties of nBn based on type-Ⅱ InAs-GaSb strained layer superlattice infrared detectors[J]. Infrared Technology, 2014, 36(11): 863-867(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201411003.htm
[37] LI Q, MA W Q, ZHANG Y H, et al. Dark current mechanism of unpassivated mid wavelength type Ⅱ InAs/GaSb superlattice infrared photodetector[J]. Chinese Science Bulletin, 2014, 59(28): 3696-3700. DOI: 10.1007/s11434-014-0511-3
[38] MANYK T, HACKIEWICZ K, RUTKOWSKI J, et al. Theoretical simulation of T2SLs InAs/GaSb cascade photodetector for HOT condition[J]. Journal of Semiconductors, 2018, 39(9): 094004 DOI: 10.1088/1674-4926/39/9/094004
[39] 朱旭波, 彭震宇, 曹先存, 等. InAs/GaSb二类超晶格中/短波双色红外焦平面探测器[J]. 红外与激光工程, 2019, 48(11): 102-107. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201911016.htm ZHU X B, PENG Zh Y, CAO X C, et al. Mid-/short-wavelength dual-color infrared focal plane arrays based on type-Ⅱ InAs/GaSb superlattice[J]. Infrared and Laser Engineering, 2019, 48(11): 102-107. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201911016.htm
[40] KIM H S. Dark current analysis of an InAs/GaSb type Ⅱ superla-ttice infrared photodiode with SiO2 passivation[J]. Journal of the Korean Physical Society, 2021, 78(11): 1141-1146. DOI: 10.1007/s40042-021-00137-8
[41] KESARIA M, ALSHAHRANI D, KWAN D, et al. Optical and electrical performance of 5 μm InAs/GaSb type-Ⅱ superlattice for NOx sensing application-ScienceDirect[J]. Materials Research Bu-lletin, 2021, 142: 111424. DOI: 10.1016/j.materresbull.2021.111424
[42] KRIZMAN G, CAROSELLA F, BERMEJO-ORTIZ J, et al. Magneto-spectroscopy investigation of InAs/InAsSb superlattices for midwave infrared detection[J]. Journal of Applied Physics, 2021, 130(5): 055704. DOI: 10.1063/5.0054320
[43] DU Y N, WANG L, XU Y, et al. Design and calculation of type-Ⅱ superlattice resonant cavity-enhanced photodetector with high quantum efficiency and low dark current[J]. Physica, 2021, 619: 413201. DOI: 10.1016/j.physb.2021.413201
[44] SINGH A, MUKHERJEE S, MURALIDHARAN B. Comprehensive quantum transport analysis of M-superlattice structures for barrier infrared detectors[J]. Journal of Applied Physics, 2022, 131(9): 094303. DOI: 10.1063/5.0083120
[45] HAO X, TENG Y, ZHU H, et al. High-operating-temperature MWIR photodetector based on a InAs/GaSb superlattice grown by MOCVD[J]. Journal of Semiconductors, 2022, 43(1): 53-56.
[46] NGUYEN B M, HOFFMAN D, DELAUNAY P Y, et al. Dark cu-rrent suppression in type Ⅱ InAs/GaSb superlattice long wavelength infrared photodiodes with M-structure barrier[J]. Applied Physics Letters, 2007, 91(16): 163511.
[47] SUNDARAM M, REISINGER A, DENNIS R, et al. 1024×1024 LWIR SLS FPAs: Status and characterization[J]. Proceedings of the SPIE, 2012, 8353: 83530W.
[48] KLIPSTEIN P C, AVNON E, BENNY Y, et al. InAs/GaSb type Ⅱ superlattice barrier devices with a low dark current and a high-quantum efficiency[J]. Proceedings of the SPIE, 2014, 9070: 90700U.
[49] WANG F, CHEN J, XU Z, et al. Molecular beam epitaxy growth of high quality InAs/GaSb type-Ⅱ superlattices for long wavelength infrared detection[J]. Proceedings of the SPIE, 2014, 9300: 930008.
[50] KLIPSTEIN P C, AVNON E, AZULAI D, et al. Type Ⅱ superla-ttice technology for LWIR detectors[J]. Proceedings of the SPIE, 2016, 9819: 98190T.
[51] HUANG M, HE L, CHEN J, et al. InAs/GaAsSb type-Ⅱ superlattice LWIR focal plane arrays detectors grown on InAs substrates[J]. IEEE Photonics Technology Letters, 2020, 32(8): 453-456.
[52] KOPYTKO M, GOMÓKA E, MANYK T, et al. Barrier in the valence band in the nBn detector with an active layer from the type-Ⅱ superlattice article info abstract[J]. Opto-Electronics Review, 2021, 29: 1-4.
[53] MARTYNIUK P, WOJTAS J, MICHALCZEWSKI K, et al. Demonstration of the long wavelength InAs/InAsSb type-Ⅱ superlattice based methane sensor-ScienceDirect[J]. Sensors and Actuators A: Physical, 2021, 332: 113107.
[54] LI X, JIANG D, ZHANG Y, et al. Investigations of quantum efficiency in type-Ⅱ InAs/GaSb very long wavelength infrared superla-ttice detectors[J]. Superlattices and Microstructures, 2016, 92: 330-336.
[55] 岳壮豪. 锑化物超晶格甚长波红外探测器的结构设计与模拟[D]. 南京: 南京大学, 2020: 76. YUE Zh H. Design and simulation of sb-based superlattice very-long-wavelength infrared detector[D]. Nanjing: Nanjing University, 2020: 76(in Chinese).