高级检索

基于k·p方法的二类超晶格红外探测器仿真进展

孙童, 关晓宁, 张凡, 宋海智, 芦鹏飞

孙童, 关晓宁, 张凡, 宋海智, 芦鹏飞. 基于k·p方法的二类超晶格红外探测器仿真进展[J]. 激光技术, 2023, 47(4): 439-453. DOI: 10.7510/jgjs.issn.1001-3806.2023.04.001
引用本文: 孙童, 关晓宁, 张凡, 宋海智, 芦鹏飞. 基于k·p方法的二类超晶格红外探测器仿真进展[J]. 激光技术, 2023, 47(4): 439-453. DOI: 10.7510/jgjs.issn.1001-3806.2023.04.001
SUN Tong, GUAN Xiaoning, ZHANG Fan, SONG Haizhi, LU Pengfei. Progress in simulation of type-Ⅱ superlattice infrared detectors based on the k·p method[J]. LASER TECHNOLOGY, 2023, 47(4): 439-453. DOI: 10.7510/jgjs.issn.1001-3806.2023.04.001
Citation: SUN Tong, GUAN Xiaoning, ZHANG Fan, SONG Haizhi, LU Pengfei. Progress in simulation of type-Ⅱ superlattice infrared detectors based on the k·p method[J]. LASER TECHNOLOGY, 2023, 47(4): 439-453. DOI: 10.7510/jgjs.issn.1001-3806.2023.04.001

基于k·p方法的二类超晶格红外探测器仿真进展

基金项目: 

中国兵器工业集团激光器件技术重点实验室开放课题基金资助项目 KLLDT202103

详细信息
    作者简介:

    孙童(1998-),女,博士研究生,现主要从事器件模拟的研究

    通讯作者:

    芦鹏飞, E-mail: photon.bupt@gmail.com

  • 中图分类号: TN215

Progress in simulation of type-Ⅱ superlattice infrared detectors based on the k·p method

  • 摘要: 二类超晶格(T2SL)相对于其它制冷型红外探测器材料体系,具有成本低、均匀性高、工艺兼容性好等特点,且波长灵活可调、俄歇复合速率低。 k · p 方法作为一种常用且相对成熟的能带结构仿真技术,具有计算精度高、节省计算资源等特点,在T2SL的仿真中受到了广泛的关注。梳理了中波、长波、甚长波T2SL红外探测器的仿真进展,归纳了 k · p 方法的发展过程,以及该方法在T2SL红外探测器仿真中的进展和作用,直观展示 k · p 方法在超晶格仿真工作中的准确性与便利性;重点讨论了T2SL探测器的暗电流机制、量子效率和吸收光谱等性质,对T2SL红外探测器的研究和应用前景进行展望。采用包络函数近似下的 k · p 方法可以对超晶格材料的能带结构和电子性质进行较为准确的理论分析和仿真计算。
    Abstract: Compared with other cooled infrared detector material systems, type-Ⅱ superlattice (T2SL) has the characteristics of low cost, high uniformity, good process compatibility, flexible wavelength adjustability and lower Auger recombination rates. As a commonly used and relatively mature energy band structure simulation technology, the k · p method has the characteristics of high computational accuracy and saving computing resources, and has received widespread attention in the simulation of T2SL. The progress of simulation of mid-wave, long-wave, and very-long-wave T2SL infrared detectors was reviewed, and the development process of the k · p method was summarized, as well as the progress and role of the method in the simulation of T2SL infrared detectors, to more intuitively demonstrate the accuracy and convenience of the k · p method in superlattice simulation work. The dark current mechanisms, quantum efficiency, absorption spectra, and other properties of T2SL detectors were discussed with emphasis on the prospect of research and application of T2SL infrared detectors. The k · p method under the approximation of the envelope function can be used to perform accurate theoretical analysis and simulation calculations on the band structure and electronic properties of superlattice materials.
  • 感谢鲁东大学的马晓光教授、王子昊、杨露露、郭子仪、徐佩瑶、王晨璐、谢新宇及北京邮电大学的刘刚副教授、贾宝楠、孙懿凡、沈东培对本项工作的支持。
  • 图  1   InAs/GaSb T2SL能带结构[10]

    Figure  1.   InAs/GaSb T2SL band structure[10]

    图  2   超晶格电子结构计算方法

    Figure  2.   Calculation method of superlattice electronic structure

    图  3   实验和仿真结果[4]

    Figure  3.   Experimental and simulationresults[4]

    图  4   a—能量色散关系[19]  b—14.7 ML InAs/7 ML GaSb T2SL吸收光谱[19]

    Figure  4.   a—energy dispersion relationship[19]  b—14.7 ML InAs/7 ML GaSb T2SL absorption spectrum[19]

    图  5   a—中波器件生长顺序示意图[37]  b—不同温度下暗电流的Arrhenius图[37]

    Figure  5.   a—medium wave device growth sequence diagram[37]  b—dark current Arrhenius diagram at different temperatures[37]

    图  6   实验和理论值比较[38]

    Figure  6.   Experimental and theoretical comparison[38]

    图  7   a—超晶格材料的能带图[39]  b—电流密度与电压关系[39]

    Figure  7.   a—superlattice material and band diagram[39]  b—current density vs. voltage relationship[39]

    图  8   实验测量和理论模拟[40]

    Figure  8.   Experimental measurements and theoretical simulations[40]

    图  9   a,b—7 ML InAs/4 ML GaSb T2SL不同界面结构下的能带结构示意图[41]  c,d—微带色散示意图[41]

    Figure  9.   a, b—schematic diagram of band structure under different interface structures of 7 ML InAs/4 ML GaSb T2SL[41]  c, d—diagram of miniband dispersion[41]

    图  10   暗电流密度模拟[41]

    Figure  10.   Dark current density simulation[41]

    图  11   a—150 K时提取的一个周期的InAs/InAsSb SL能带示意图[42]  b—150 K时InAs/InAsSb SL在kxkz方向上的微带色散[42]

    Figure  11.   a—schematic diagram of energy band in one period ofInAs/InAsSb SL extracted at 150 K[42]  b—diagram of miniband dispersion of InAs/InAsSb SL in the kx and kz directions at 150 K[42]

    图  12   不同吸收层厚度下的曲线[44]

    Figure  12.   Curve under different absorption thickness[44]

    图  13   M结构超晶格[44]

    a—能带排列示意图  b—带隙测量与理论预测比较

    Figure  13.   M-structure superlattice[44]

    a—schematic diagram of the energy band arrangement  b—comparison of the band gap measurement and theoretical prediction

    图  14   PNN探测器[45]

    a—结构图  b—不同温度下暗电流与电压的关系

    Figure  14.   PNN detector[45]

    a—structure diagram  b—relationship between dark current and voltage at different temperatures

    图  15   a—PπMN超晶格结构[46]  b—具有M结构势垒的二极管电学特性[46]

    Figure  15.   a—PπMN superlattice structure[46]  b—electrical characteristics of diode with M-structure barrier[46]

    图  16   a—接近工作偏置时PBpP器件的层排列、带剖面[48]  b—InAs/GaSb器件的暗电流随温度的变化关系[48]

    Figure  16.   a—layer arrangement and band profile of PBpP devices near their working bias[48]  b—dark current of InAs/GaSb devices changing with temperature[48]

    图  17   PBπN红外探测器[49]

    a—外延结构图及其能带示意图  b—暗电流密度

    Figure  17.   PBπN infrared detector[49]

    a—epitaxial structure and band diagram  b—dark current density

    图  18   PBP器件[49]

    a—层排列、带剖面  b—PBP器件与N-P二极管的暗电流

    Figure  18.   PBP device[49]

    a—layer arrangement, band profile  b—dark current of PBP device and N-P diode

    图  19   InAs/GaAsSb T2SL长波器件[55]

    a—结构图  b—不同温度下暗电流随偏压的变化

    Figure  19.   InAs/GaAsSb T2SL long wave device[51]

    a—structure diagram  b—dark current variation with bias at different temperatures

    图  20   InAs/InAsSb超晶格[52]

    a—带隙图  b—I-V特性的经验数据(点)和理论计算

    Figure  20.   InAs/InAsSb superlattice[52]

    a—bandgap diagram  b—empirical data (dots) and theoretical calculations of I-V properties

    图  21   InAs/InAsSb二类超晶格[53]

    a—势垒探测器结构  b—T=210 K时的电子能带结构

    Figure  21.   InAs/InAsSb T2SL[53]

    a—barrier detector structure  b—electronic band structure of InAs/InAsSb T2SL at T=210 K

    图  22   a—器件横截面示意图[9]  b—两种不同InAs/GaSb超晶格设计的吸收光谱[9]

    Figure  22.   a—device cross section schematic diagram[9]  b—absorption spectra of two different InAs/GaSb superlattice designs[9]

    图  23   InAs/GaSb甚长波二类超晶格[54]

    a—结构图  b—测得和模拟的吸收系数

    Figure  23.   InAs/GaSb VLWIR T2SL[54]

    a—structure diagram  b—measured and simulated absorption coefficients

  • [1]

    SAI-HALASZ G A, TSU R, ESAKI L. A new semiconductor superlattice[J]. Applied Physics Letters, 1977, 30(12): 651-653. DOI: 10.1063/1.89273

    [2]

    ESAKI L. InAs-GaSb superlattices-synthesized semiconductors and semimetals[J]. Journal of Crystal Growth, 1981, 52(1): 227-240.

    [3]

    SMITH D L, MAILHIOT C. Proposal for strained type Ⅱ superlattice infrared detectors[J]. Journal of Applied Physics, 1987, 62(6): 2545-2548. DOI: 10.1063/1.339468

    [4]

    DENTE G C, TILTON M L. Comparing pseudopotential predictions for InAs/GaSb superlattices[J]. Physical Review B, 2002, 66(16): 165307. DOI: 10.1103/PhysRevB.66.165307

    [5]

    LIVNEH Y, KLIPSTEIN P C, KLIN O, et al. k·p model for the energy dispersions and absorption spectra of InAs/GaSb type-Ⅱ superlattices[J]. Physical Review B, 2012, 86(23): 235311. DOI: 10.1103/PhysRevB.86.235311

    [6]

    NG S T, FAN W J, DANG Y X, et al. Comparison of electronic band structure and optical transparency conditions of InxGa1-xAs1-yNy/GaAs quantum wells calculated by 10-band, 8-band, and 6-band k·p models[J]. Physical Review B, 2005, 72(11): 115341. DOI: 10.1103/PhysRevB.72.115341

    [7] 杨斌. 二类超晶格红外光电材料研究与应用[J]. 中国基础科学, 2019, 21(1): 52-54. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJB201901008.htm

    YANG B. Investigation and application of type Ⅱ superlattice infrared optoelectronic materials[J]. China Basic Science, 2019, 21(1): 52-54 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJB201901008.htm

    [8] 尚林涛, 王静, 邢伟荣, 等. 红外探测Ⅱ类超晶格技术概述(一)[J]. 激光与红外, 2021, 51(4): 404-414. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202104002.htm

    SHANG L T, WANG J, XING W R, et al. Overview of infrared detection type-Ⅱ superlattice technology(I)[J]. Laser & Infrared, 2021, 51(4): 404-414 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202104002.htm

    [9]

    BROWN G J, SZUMLOWICZ F, MAHALINGAM K, et al. Recent advances in InAs/GaSb superlattices for very long wavelength infrared detection[J]. Proceedings of the SPIE, 2003, 4999: 457-466. DOI: 10.1117/12.483916

    [10] 王忆锋, 余连杰, 钱明. Ⅱ类超晶格甚长波红外探测器的发展[J]. 光电技术应用, 2011, 26(2): 45-52. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYG201102013.htm

    WANG Y F, YU L J, QIAN M. Development of type-Ⅱ superla-ttices for very long wavelength infrared detector[J]. Electro-optic Technology Application, 2011, 26(2): 45-52(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDYG201102013.htm

    [11]

    WEI Y, RAZEGHI M. Modeling of type-Ⅱ InAs/GaSb superlattices using an empirical tight-binding method and interface engineering[J]. Physical Review B, 2004, 69(8): 428-433.

    [12] 谢修敏, 徐强, 陈剑, 等. 锑化物Ⅱ类超晶格中远红外探测器的研究进展. 激光技术, 2020, 44(6): 688-694. DOI: 10.7510/jgjs.issn.1001-3806.2020.06.007

    XIE X M, XU Q, CHEN J, et al. Research progress on antimonide based type-Ⅱ superlattices mid- and long-infrared detectors. Laser Technology, 2020, 44(6): 688-694(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2020.06.007

    [13] 常发冉, 蒋志, 王国伟, 等. 锑化物超晶格长波红外焦平面探测器研究进展[J]. 中国科学: 物理学、力学、天文学, 2021, 51(2): 32-49. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK202102004.htm

    CHANG F R, JIANG Zh, WANG G W, et al. Progress of long wavelength infrared focal plane arrays based on antimonide compounds superlattice[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2021, 51(2): 32-49(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK202102004.htm

    [14] 张莹, 刘塑. 国外红外焦平面探测器组件可靠性研究综述[J]. 红外技术, 2012, 34(3): 134-139. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201203001.htm

    ZHANG Y, LIU S. Reliability research on foreign infrared focal plane assembly[J]. Infrared technology, 2012, 34(3): 134-139 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201203001.htm

    [15] 孙伟峰. InAs/(In)GaSb超晶格的能带结构和器件设计研究[D]. 哈尔滨: 哈尔滨工业大学, 2011: 195.

    SUN W F. Band structure and device design study of InAs/(In)GaSb superlattice[D]. Harbin: Harbin Institute of Technology, 2011: 195. (in Chinese).

    [16]

    KLIPSTEIN P C, LIVNEH Y, GLOZMAN A, et al. Modeling InAs/GaSb and InAs/InAsSb superlattice infrared detectors[J]. Journal of Electronic Materials, 2014, 43(8): 2984-2990. DOI: 10.1007/s11664-014-3169-3

    [17]

    PIKUS G E. Effect of deformation on the hole energy spectrum of germanium and silicon[J]. Soviet Physics-Solid State, 1960, 1: 1502-1517.

    [18] 徐斯元. 基于高阶k·p方法的应变锗能带结构计算[D]. 西安: 西安电子科技大学, 2015: 88

    XU S Y. Band structure calculation of strained germanium based on high-order k·p method[D]. Xi'an: Xidian University, 2015: 88(in Chinese).

    [19]

    QIAO P F, MOU S, CHUANG S L. Electronic band structures and optical properties of type-Ⅱ superlattice photodetectors with interfacial effect[J]. Optics Express, 2012, 20(3): 2319-2334. DOI: 10.1364/OE.20.002319

    [20]

    SCHEINERT M. Optical pumping: A possible approach towards a SiGe quantum cascade laser[DB/OL]. (2007-10-08)[2022-05-06]. https://123dok.net/document/yng7kn51-optical-pumping-possible-approach-towards-quantum-cascade-laser.html.

    [21]

    BAHDER T B. Eight-band k·p model of strained zinc-blende crystals[J]. Physical Review B, 1990, 41(17): 11992. DOI: 10.1103/PhysRevB.41.11992

    [22]

    WOOD D M, ZUNGER A. Successes and failures of the k·p method: A direct assessment for GaAs/AlAs quantum structures[J]. Physical Review B, 1996, 53(12): 7949-7963. DOI: 10.1103/PhysRevB.53.7949

    [23]

    BAHDER T B. Analytic dispersion relations near the Γ point in strained zinc-blende crystals[J]. Physical Review B, 1992, 45(4): 1629-1637. DOI: 10.1103/PhysRevB.45.1629

    [24]

    BASSANIF, PARRAVICINI G P, BALLINGER R A, et al. Electronic states and optical transitions in solids[J]. Physics Today, 1976, 29(3): 58-59. DOI: 10.1063/1.3023374

    [25]

    BURT M G. The justification for applying the effective-mass approximation to microstructures[J]. Journal of Physics: Condensed Ma-tter, 1992, 4(32): 6651. DOI: 10.1088/0953-8984/4/32/003

    [26]

    KLIPSTEIN P C. Operator ordering and interface-band mixing in the Kane-like Hamiltonian of lattice-matched semiconductor superlattices with abrupt interfaces[J]. Physical Review B, 2010, 81(23): 235314. DOI: 10.1103/PhysRevB.81.235314

    [27]

    LIU C X, QI X L, ZHANG H, et al. Model Hamiltonian for topological insulators[J]. Physical Review B, 2010, 82(4): 045122. DOI: 10.1103/PhysRevB.82.045122

    [28]

    SZMULOWICZ F. Derivation of a general expression for the momentum matrix elements within the envelope-function approximation[J]. Physical Review B, 1995, 51(3): 1613-1623. DOI: 10.1103/PhysRevB.51.1613

    [29]

    CHANG Y C, JAMES R B. Saturation of intersubband transitions in P-type semiconductor quantum wells[J]. Physical Review B, 1989, 39(17): 12672-12681. DOI: 10.1103/PhysRevB.39.12672

    [30]

    KLIPSTEIN P C, LIVNEH Y, KLIN O, et al. A k·p model of InAs/GaSb type Ⅱ superlattice infrared detectors[J]. Infrared Physics & Technology, 2013, 59(6): 53-59.

    [31]

    RAZEGHI M, NGUYEN B M, DELAUNAY P Y, et al. State-of-the-art type Ⅱ antimonide-based superlattice photodiodes for infrared detection and imaging[J]. Proceedings of the SPIE, 2009, 7467: 181-193.

    [32]

    RODRIGUEZ J B, CHRISTOL P, CHEVRIER F, et al. Optical characterization of symmetric InAs/GaSb superlattices for detection in the 3-5 μm spectral region[J]. Physica, 2005, E28(2): 128-133.

    [33]

    HAUGAN H J, BROWN G J, SMULOWICZ F, et al. InAs/GaSb type-Ⅱ superlattices for high performance mid-infrared detectors[J]. Journal of Crystal Growth, 2005, 278(1/4): 198-202.

    [34]

    HAO R T, XU Y Q, ZHOU Z Q, et al. MBE growth of very short period InAs/GaSb type-Ⅱ superlattices on (001) GaAs substrates[J]. Journal of Physics, 2007, D40(21): 6690-6693.

    [35] 李俊斌, 李东升, 杨玉林, 等. 以色列SCD公司的Ⅲ-Ⅴ族红外探测器研究进展[J]. 红外技术, 2018, 40(10): 936-945. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201810003.htm

    LI J B, LI D Sh, YANG Y L et al. Ⅲ-Ⅴ semiconductor infrared detector research in SCD of israel[J]. Infrared Technology, 2018, 40(10): 936-945(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201810003.htm

    [36] 胡锐, 邓功荣, 张卫锋, 等. nBn型InAs/GaSb Ⅱ类超晶格红外探测器光电特性研究[J]. 红外技术, 2014, 36(11): 863-867. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201411003.htm

    HU R, DENG G R, ZHANG W F, et al. Electrical and optical properties of nBn based on type-Ⅱ InAs-GaSb strained layer superlattice infrared detectors[J]. Infrared Technology, 2014, 36(11): 863-867(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201411003.htm

    [37]

    LI Q, MA W Q, ZHANG Y H, et al. Dark current mechanism of unpassivated mid wavelength type Ⅱ InAs/GaSb superlattice infrared photodetector[J]. Chinese Science Bulletin, 2014, 59(28): 3696-3700. DOI: 10.1007/s11434-014-0511-3

    [38]

    MANYK T, HACKIEWICZ K, RUTKOWSKI J, et al. Theoretical simulation of T2SLs InAs/GaSb cascade photodetector for HOT condition[J]. Journal of Semiconductors, 2018, 39(9): 094004 DOI: 10.1088/1674-4926/39/9/094004

    [39] 朱旭波, 彭震宇, 曹先存, 等. InAs/GaSb二类超晶格中/短波双色红外焦平面探测器[J]. 红外与激光工程, 2019, 48(11): 102-107. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201911016.htm

    ZHU X B, PENG Zh Y, CAO X C, et al. Mid-/short-wavelength dual-color infrared focal plane arrays based on type-Ⅱ InAs/GaSb superlattice[J]. Infrared and Laser Engineering, 2019, 48(11): 102-107. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201911016.htm

    [40]

    KIM H S. Dark current analysis of an InAs/GaSb type Ⅱ superla-ttice infrared photodiode with SiO2 passivation[J]. Journal of the Korean Physical Society, 2021, 78(11): 1141-1146. DOI: 10.1007/s40042-021-00137-8

    [41]

    KESARIA M, ALSHAHRANI D, KWAN D, et al. Optical and electrical performance of 5 μm InAs/GaSb type-Ⅱ superlattice for NOx sensing application-ScienceDirect[J]. Materials Research Bu-lletin, 2021, 142: 111424. DOI: 10.1016/j.materresbull.2021.111424

    [42]

    KRIZMAN G, CAROSELLA F, BERMEJO-ORTIZ J, et al. Magneto-spectroscopy investigation of InAs/InAsSb superlattices for midwave infrared detection[J]. Journal of Applied Physics, 2021, 130(5): 055704. DOI: 10.1063/5.0054320

    [43]

    DU Y N, WANG L, XU Y, et al. Design and calculation of type-Ⅱ superlattice resonant cavity-enhanced photodetector with high quantum efficiency and low dark current[J]. Physica, 2021, 619: 413201. DOI: 10.1016/j.physb.2021.413201

    [44]

    SINGH A, MUKHERJEE S, MURALIDHARAN B. Comprehensive quantum transport analysis of M-superlattice structures for barrier infrared detectors[J]. Journal of Applied Physics, 2022, 131(9): 094303. DOI: 10.1063/5.0083120

    [45]

    HAO X, TENG Y, ZHU H, et al. High-operating-temperature MWIR photodetector based on a InAs/GaSb superlattice grown by MOCVD[J]. Journal of Semiconductors, 2022, 43(1): 53-56.

    [46]

    NGUYEN B M, HOFFMAN D, DELAUNAY P Y, et al. Dark cu-rrent suppression in type Ⅱ InAs/GaSb superlattice long wavelength infrared photodiodes with M-structure barrier[J]. Applied Physics Letters, 2007, 91(16): 163511.

    [47]

    SUNDARAM M, REISINGER A, DENNIS R, et al. 1024×1024 LWIR SLS FPAs: Status and characterization[J]. Proceedings of the SPIE, 2012, 8353: 83530W.

    [48]

    KLIPSTEIN P C, AVNON E, BENNY Y, et al. InAs/GaSb type Ⅱ superlattice barrier devices with a low dark current and a high-quantum efficiency[J]. Proceedings of the SPIE, 2014, 9070: 90700U.

    [49]

    WANG F, CHEN J, XU Z, et al. Molecular beam epitaxy growth of high quality InAs/GaSb type-Ⅱ superlattices for long wavelength infrared detection[J]. Proceedings of the SPIE, 2014, 9300: 930008.

    [50]

    KLIPSTEIN P C, AVNON E, AZULAI D, et al. Type Ⅱ superla-ttice technology for LWIR detectors[J]. Proceedings of the SPIE, 2016, 9819: 98190T.

    [51]

    HUANG M, HE L, CHEN J, et al. InAs/GaAsSb type-Ⅱ superlattice LWIR focal plane arrays detectors grown on InAs substrates[J]. IEEE Photonics Technology Letters, 2020, 32(8): 453-456.

    [52]

    KOPYTKO M, GOMÓKA E, MANYK T, et al. Barrier in the valence band in the nBn detector with an active layer from the type-Ⅱ superlattice article info abstract[J]. Opto-Electronics Review, 2021, 29: 1-4.

    [53]

    MARTYNIUK P, WOJTAS J, MICHALCZEWSKI K, et al. Demonstration of the long wavelength InAs/InAsSb type-Ⅱ superlattice based methane sensor-ScienceDirect[J]. Sensors and Actuators A: Physical, 2021, 332: 113107.

    [54]

    LI X, JIANG D, ZHANG Y, et al. Investigations of quantum efficiency in type-Ⅱ InAs/GaSb very long wavelength infrared superla-ttice detectors[J]. Superlattices and Microstructures, 2016, 92: 330-336.

    [55] 岳壮豪. 锑化物超晶格甚长波红外探测器的结构设计与模拟[D]. 南京: 南京大学, 2020: 76.

    YUE Zh H. Design and simulation of sb-based superlattice very-long-wavelength infrared detector[D]. Nanjing: Nanjing University, 2020: 76(in Chinese).

图(23)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  6
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-26
  • 修回日期:  2022-09-15
  • 发布日期:  2023-07-24

目录

    /

    返回文章
    返回