高级检索

反向保偏光纤耦合器偏振特性研究

龙润泽, 张昆, 张利明, 赵鸿

龙润泽, 张昆, 张利明, 赵鸿. 反向保偏光纤耦合器偏振特性研究[J]. 激光技术, 2023, 47(3): 413-418. DOI: 10.7510/jgjs.issn.1001-3806.2023.03.020
引用本文: 龙润泽, 张昆, 张利明, 赵鸿. 反向保偏光纤耦合器偏振特性研究[J]. 激光技术, 2023, 47(3): 413-418. DOI: 10.7510/jgjs.issn.1001-3806.2023.03.020
LONG Runze, ZHANG Kun, ZHANG Liming, ZHAO Hong. Research of polarization characteristics of reverse polarization-maintaining optical fiber coupler[J]. LASER TECHNOLOGY, 2023, 47(3): 413-418. DOI: 10.7510/jgjs.issn.1001-3806.2023.03.020
Citation: LONG Runze, ZHANG Kun, ZHANG Liming, ZHAO Hong. Research of polarization characteristics of reverse polarization-maintaining optical fiber coupler[J]. LASER TECHNOLOGY, 2023, 47(3): 413-418. DOI: 10.7510/jgjs.issn.1001-3806.2023.03.020

反向保偏光纤耦合器偏振特性研究

基金项目: 

国防科技重点实验室基金资助项目 6142404200102

国防科技重点实验室基金资助项目 6142404200101

详细信息
    作者简介:

    龙润泽(1988-), 男, 工学硕士, 高级工程师, 主要从事光纤激光器及光纤器件的研究。E-mail: long_runze@126.com

  • 中图分类号: TN256;O436.3

Research of polarization characteristics of reverse polarization-maintaining optical fiber coupler

  • 摘要: 为了提升高能偏振光纤激光器输出激光偏振态稳定性, 通过阐述反向保偏光纤耦合器反向消光比基本原理, 采用信号光源与(6+1)×1反向保偏光纤耦合器研制相结合, 取得了反向保偏光纤耦合器信号保偏光纤直径、信号保偏光纤应力区物理变化等因素和反向保偏光纤耦合器反向消光比的关系。结果表明, 信号保偏光纤直径越小, 输出偏振激光的偏振态越稳定, 反向消光比大于49 dB, 同时促进反向保偏光纤耦合器抽运光纤臂耦合效率提升至98%以上; 正向偏振激光输出光纤应力区物理结构变化越明显, 经反向保偏光纤耦合器反向输出偏振激光的偏振态越不稳定。该研究可为制备高消光比、高能偏振光纤激光器提供参考。
    Abstract: In order to improve the output laser polarization stability of high-energy polarization fiber lasers, the signal light source and (6+1)×1 reverse polarization-maintaining optical fiber coupler were combined by introducing the basic principle of reverse extinction ratio of reverse polarization-maintaining optical fiber coupler. The influence of signal polarization-maintaining optical fiber diameter and physical change of the stress area of the reverse polarization-maintaining optical fiber on the reverse extinction ratio of a reverse polarization-maintaining optical fiber coupler was studied. The results show that the smaller the diameter of the signal polarization-maintaining fiber, the more stable the polarization state of the output polarized laser, and the reverse extinction ratio is greater than 49 dB. At the same time, the coupling efficiency of the pumping fiber arm of the reverse polarization-maintaining fiber coupler is improved to more than 98%. The more serious the change of the physical structure of the stress region of the forward polarization laser output fiber, the less stable the polarization state of the output polarization laser. The research provides reference for the preparation of high extinction ratio high-energy polarization fiber lasers.
  • 图  1   反向保偏光纤耦合器结构图

    Figure  1.   RPM-OFC structure

    图  2   反向保偏光纤耦合器反向消光比测试系统

    Figure  2.   RPM-OFC reverse extinction ratio test system

    图  3   反向保偏光纤耦合器抽运激光耦合效率测试系统

    Figure  3.   RPM-OFC pump laser coupling efficiency test system

    图  4   不同直径信号保偏光纤,(6+1)×1反向保偏光纤耦合器抽运激光耦合效率及反向消光比随抽运激光供电电流变化的测试结果

    Figure  4.   (6+1)×1 RPM-OFC different PM fiber diameter and pump laser supply current change output pump coupling efficiency change and reverse extinction ratio

    图  5   反向保偏光纤耦合器信号保偏光纤端部横截面随熔接时间的变化实验数据图

    Figure  5.   RPM-OFC signal PM fiber end cross-section with splice time change experimental data graph

    图  6   反向保偏光纤耦合器熔接时间与反向消光比关系

    Figure  6.   RPM-OFC splice time and the reverse extinction ratio relationship

  • [1] 袁艳阳, 巩马理. 大模面积光纤中折射率和掺杂分布的设计和分析[J]. 中国激光, 2008, 35(9): 1355-1359. DOI: 10.3321/j.issn:0258-7025.2008.09.012

    YUAN Y Y, GONG M L. Analysis and design of refractive-index and dopant distribution for large-mode-area fibers[J]. Chinese Journal of Lasers, 2008, 35(9): 1355-1359(in Chinese). DOI: 10.3321/j.issn:0258-7025.2008.09.012

    [2] 郑也, 杨依枫, 赵翔, 等. 高功率光纤激光光谱合成技术的研究进展[J]. 中国激光, 2020, 44(2): 0201002. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201702003.htm

    ZHENG Y, YANG Y F, ZHAO X, et al. Research progress on spectral beam combining technology of high-power fiber lasers[J]. Chinese Journal of Lasers, 2020, 44(2): 0201002(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201702003.htm

    [3] 张昆, 房一涛, 余洋, 等. 100 W级全光纤化线偏振单频光纤放大器[J]. 强激光与粒子束, 2022, 34(3): 031001. https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY202203001.htm

    ZHANG K, FANG Y T, YU Y, et al. 100 W-level single-frequence fiber amplifier with all-fiber linear polarization[J]. High Power Laser and Particle Beams, 2022, 34(3): 031001(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY202203001.htm

    [4]

    JEFFREY P K, SEAN W M. A new method for side-pumping of double-clad fiber sources[J]. Quantum Electronics, 2003, 39(4): 529-539. DOI: 10.1109/JQE.2003.809336

    [5] 吴中林, 楼祺洪, 周军, 等. 光纤激光器的抽运方法研究进展[J]. 激光与光电子学进展, 2004, 41(4): 30-33. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ200404004.htm

    WU Zh L, LOU Q H, ZHOU J, et al. Resesrch progress of pumping methods for fiber laser[J]. Laser & Optoelectronics Progress, 2004, 41(4): 30-33(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ200404004.htm

    [6] 欧攀, 闫平, 巩马理, 等. 双包层光纤激光器的熔接型侧面耦合器[J]. 激光技术, 2008, 32(1): 8-10. http://www.jgjs.net.cn/article/id/15017

    OU P, YAN P, GONG M L, et al. Fused side-coupler for double-clad fiber lasers[J]. Laser Technology, 2008, 32(1): 8-10(in Chinese). http://www.jgjs.net.cn/article/id/15017

    [7] 楚秋慧, 郭超, 颜冬林, 等. 高功率窄线宽光纤激光器的研究进展[J]. 强激光与粒子束, 2020, 32(12): 121004. https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY202012007.htm

    CHU Q H, GUO Ch, YAN D L, et al. Recent progress of high power narrow linewidth fiber laser[J]. High Power Laser and Particle Beams, 2020, 32(12): 121004(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY202012007.htm

    [8] 杜文博, 肖虎, 王小林, 等. 主振荡功率放大结构窄线宽全光纤激光器334 W高功率输出[J]. 强激光与粒子束, 2011, 23(8): 1996-1997. https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY201108003.htm

    DU W B, XIAO H, WANG X L, et al. Narrow-linewidth high power fiber laser with output power of 334 W in all-fiber MOPA format[J]. High Power Laser and Particle Beams, 2011, 23(8): 1996-1997(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY201108003.htm

    [9] 李杰雄, 李波, 朱广志, 等. 高功率光纤激光器的残留包层光滤除研究[J]. 激光技术, 2017, 41(6): 798-802. DOI: 10.7510/jgjs.issn.1001-3806.2017.06.006

    LI J X, LI B, ZHU G Zh, et al. Study on cladding light strippers in high power fiber lasers[J]. Laser Technology, 2017, 41(6): 798-802(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2017.06.006

    [10] 王岩山, 王珏, 常哲, 等. 基于简单MOPA结构实现3.08 kW全光纤窄线宽线偏振激光输出[J]. 强激光与粒子束, 2020, 32(1): 011006. https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY202001006.htm

    WANF Y Sh, WANG J, CHANG Zh, et al. Output of 3.08 kW narrow linewidth linearly polarized all-fiber laser based on a simple MOPA structure[J]. High Power Laser and Particle Beams, 2020, 32(1): 011006(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY202001006.htm

    [11] 张利明, 周寿恒, 赵鸿, 等. kW级主振荡功率放大光纤激光器输出特性[J]. 强激光与粒子束, 2013, 25(8): 1893-1896(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY201308004.htm

    ZHANG L M, ZHOU Sh H, ZHAO H, et al. Output characteristics of kW master-oscillator power amplifier fiber laser[J]. High Power Laser and Particle Beams, 2013, 25(8): 1893-1896(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY201308004.htm

    [12] 朱志坚, 薛竣文, 王玉珂, 等. 基于MOPA结构的1064 nm单频光纤激光器[J]. 激光技术, 2019, 43(6): 800-803. DOI: 10.7510/jgjs.issn.1001-3806.2019.06.013

    ZHU Zh J, XUE J W, WANG Y K, et al. 1064 nm single-frequency fiber lasers based on MOPA structure[J]. Laser Technology, 2019, 43(6): 800-803(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2019.06.013

    [13] 周梦薇, 任偲源, 朱益清, 等. 熔锥型宽带光纤耦合器的研究[J]. 激光技术, 2019, 43(6): 758-762. DOI: 10.7510/jgjs.issn.1001-3806.2019.06.005

    ZHOU M W, REN S Y, ZHU Y Q, et al. Study on fused biconical taper broadband couplers[J]. Laser Technology, 2019, 43(6): 758-762(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2019.06.005

    [14] 李瑞辰, 张鹏, 庞璐, 等. 熔锥型侧面泵浦耦合器的研究[J]. 应用光学, 2011, 32(3): 522-525. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201103030.htm

    LI R Ch, ZHANG P, PANG L, et al. Fused biconical taper side-pumped fiber coupler[J]. Journal of Applied Optics, 2011, 32(3): 522-525(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201103030.htm

    [15] 姚建铨, 任广军, 张强, 等. 掺镱双包层光纤激光器及其泵浦耦合技术[J]. 激光杂志, 2000, 27(5): 17-19. https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ200605000.htm

    YAO J Q, REN G J, ZHANG Q, et al. Yb doped double clad fiber laser and pump coupling technology[J]. Laser Journal, 2000, 27(5): 17-19(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ200605000.htm

    [16] 龙润泽, 张鹏, 黄榜才, 等. 大模场高功率泵浦耦合器研究[J]. 光通信技术, 2017, 41(5): 42-44. https://www.cnki.com.cn/Article/CJFDTOTAL-GTXS201705012.htm

    LONG R Z, ZHANG P, HUANG B C, et al. Research on large mode field high power pump coupler[J]. Optical Communication Technology, 2017, 41(5): 42-44(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GTXS201705012.htm

    [17] 龙润泽, 张昆, 张利明. 反向光纤耦合器反向隔离特性研究[J]. 激光杂志, 2022, 43(1): 70-73. https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ202201013.htm

    LONG R Z, ZHANG K, ZHANG L M. Research the reverse isolation of reverse optical fiber coupler[J]. Laser Journal, 2022, 43(1): 70-73(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ202201013.htm

    [18] 李志高, 石文江, 黄尚廉. 保偏光纤的连接损耗和消光比分析[J]. 光学学报, 1996, 16(2): 189-193. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB602.012.htm

    LI Zh G, SHI W J, HUANG Sh L. Analysis of connection loss and extuinction ratio of polarization-maintainning fibers[J]. Acta Optica Sinca, 1996, 16(2): 189-193(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB602.012.htm

    [19] 张京城, 冯铁荪, 金国藩, 等. 保偏光纤双折射主轴的旋转对消光比的影响[J]. 光学学报, 1990, 10(3): 286-288. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB199003015.htm

    ZHANG J Ch, FENG T S, JIN G F. Dependence of extinction ratio on birefringent axes rotation in polarization-maintaining fibers[J]. Acta Optica Sinca, 1990, 10(3): 286-288(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB199003015.htm

    [20] 徐宏杰, 秦秉坤, 陈淑芬. 光纤型偏振器消光比测试方法研究[J]. 光学技术, 2002, 28(5): 419-426. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS200205010.htm

    XU H J, QIN B K, CHEN Sh F. Measurement for extinction ratio of fiber-optic polarizer[J]. Optical Technique, 2002, 28(5): 419-426(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS200205010.htm

    [21] 唐尊伟, 娄淑琴. 熔融型保偏光纤耦合器分光比的依赖性研究[J]. 红外与激光工程, 2012, 41(3): 759-764. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201203043.htm

    TANG Z W, LOU Sh Q. Research on the dependence of coupling ratio for fused-tapered polarization maintaining fiber coupler[J]. Infrared and Laser Engineering, 2012, 41(3): 759-764(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201203043.htm

    [22] 姜暖, 李智忠, 杨华勇, 等. 保偏光纤双折射分析及全光纤拍长测试方法比对研究[J]. 物理学报, 2012, 32(7): 0706003. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201207014.htm

    JIANG N, LI Zh Zh, YANG H Y, et al. Birefringence analysis of polarization maintaining fiber and research on characteristic of all-fiber beat-length experimental systems[J]. Acta Physica Sinica, 2012, 32(7): 0706003(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201207014.htm

    [23] 延凤平, 卫延, 傅永军, 等. 熊猫型保偏光纤中应力区失配对光纤性能影响的研究[J]. 物理学报, 2009, 58(1): 321-327. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200901049.htm

    YAN F P, WEI Y, FU Y J, et al. Study on the performance of stress area miamatched panda polarization-maintaining fiber[J]. Acta Physica Sinica, 2009, 58(1): 321-327(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200901049.htm

    [24] 廖素英, 巩马理. 大模场光纤研究的新进展[J]. 红外与激光工程, 2011, 40(3): 455-462. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201103016.htm

    LIAO S Y, GONG M L. New progress of large mode area fibers[J]. Infrared and Laser Engineering, 2011, 40(3): 455-462(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201103016.htm

    [25] 周良, 段开椋. 熔融光纤的模场传输特性分析[J]. 红外与激光工程, 2012, 41(3): 739-744.

    ZHOU L, DUAN K L. Analyses of mode field propagation properties in fuse-tapered fibers[J]. Infrared and Laser Engineering, 2012, 41(3): 739-744(in Chinese).

图(6)
计量
  • 文章访问数:  2
  • HTML全文浏览量:  0
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-31
  • 修回日期:  2022-05-24
  • 发布日期:  2023-05-24

目录

    /

    返回文章
    返回