高级检索

空域无源光纤腔衰荡乙炔体积分数检测仿真

闵锐, 成纯富, 贺洁

闵锐, 成纯富, 贺洁. 空域无源光纤腔衰荡乙炔体积分数检测仿真[J]. 激光技术, 2023, 47(3): 366-371. DOI: 10.7510/jgjs.issn.1001-3806.2033.03.013
引用本文: 闵锐, 成纯富, 贺洁. 空域无源光纤腔衰荡乙炔体积分数检测仿真[J]. 激光技术, 2023, 47(3): 366-371. DOI: 10.7510/jgjs.issn.1001-3806.2033.03.013
MIN Rui, CHENG Chunfu, HE Jie. Simulation of space-domain passive fiber cavity ring-down acetylene gas volume fraction detection[J]. LASER TECHNOLOGY, 2023, 47(3): 366-371. DOI: 10.7510/jgjs.issn.1001-3806.2033.03.013
Citation: MIN Rui, CHENG Chunfu, HE Jie. Simulation of space-domain passive fiber cavity ring-down acetylene gas volume fraction detection[J]. LASER TECHNOLOGY, 2023, 47(3): 366-371. DOI: 10.7510/jgjs.issn.1001-3806.2033.03.013

空域无源光纤腔衰荡乙炔体积分数检测仿真

基金项目: 

国家自然科学基金资助项目 61805075

国家自然科学基金资助项目 61475044

详细信息
    作者简介:

    闵锐(1976-),男,硕士,讲师,现主要从事光纤传感技术的研究

    通讯作者:

    成纯富, E-mail: chengchunfu@hbut.edu.cn

  • 中图分类号: TP212;TN247

Simulation of space-domain passive fiber cavity ring-down acetylene gas volume fraction detection

  • 摘要: 为了更准确地分析空域无源光纤腔衰荡乙炔体积分数检测系统,建立了考虑系统噪声的气体体积分数传感理论模型。采用该模型对空域无源光纤腔衰荡乙炔体积分数检测系统的性能进行了仿真和讨论。结果表明,利用空域无源光纤腔衰荡传感技术,通过测量衰荡距离,可实现灵敏度高达56.226 km-1的乙炔体积分数的测量,稳定性达0.47%,检测极限达260.577×10-6,且稳定性和检测极限还可通过减少光纤腔的固有腔损耗得到进一步的提高。此研究对于体积分数传感系统的优化设计应用具有理论指导意义。
    Abstract: In order to analyze space-domain passive fiber cavity ring-down acetylene gas volume fraction detection system more accurately, a theoretical model of gas volume fraction sensing system considering system noise was established in this paper. The performance of space-domain passive fiber cavity ring-down acetylene gas volume fraction detection system was simulated and discussed by using this model. Simulation results show that, by using the space-domain passive fiber cavity ring-down sensing technology, the acetylene volume fraction can be monitored by measuring the ring-down distance and the sensitivity of 56.226 km-1 is achieved, the corresponding stability and detection limit can reach 0.47% and 260.577×10-6, which can be further improved by reducing the inherent cavity loss of the fiber cavity. This research has theoretical significance for the optimization design of volume fraction sensing system.
  • 图  1   空域无源光纤腔衰荡乙炔气体体积分数传感系统原理图

    Figure  1.   Schematic diagram of space-domain passive fiber cavity ring-down acetylene gas volume fraction sensing system

    图  2   空域无源光纤腔衰荡气体传感系统在充入纯氮气时的仿真信号

    a—时域的差分干涉信号 b—空域的衰荡信号

    Figure  2.   Simulation signals of space-domain passive fiber cavity ring-down gas sensing system when pure nitrogen was filled

    a—differential interference signal in time domain  b—ring-down signal in space domain

    图  3   乙炔体积分数对衰荡距离的影响

    Figure  3.   Effect of acetylene volume fraction on the ring-down distance

    图  4   平均衰荡距离倒数差对乙炔体积分数的响应曲线

    Figure  4.   Response curve of reciprocal difference of average ring-down distance to the acetylene volume fraction

    图  5   气体传感系统稳定性仿真结果

    Figure  5.   Stability simulation result of gas sensing system

    图  6   固有腔损耗对探测极限和系统稳定性的影响

    Figure  6.   Effect of inherent cavity loss on the detection limit and stability

  • [1] 刘文清, 王兴平, 马国盛, 等. 高灵敏腔衰荡光谱技术及其应用研究[J]. 光学学报, 2021, 41(1): 0130003. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202101030.htm

    LIU W Q, WANG X P, MA G Sh, et al. Research of high sensitivity cavity ring-down spectroscopy technology and its application[J]. Acta Optica Sinica, 2021, 41(1): 0130003(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202101030.htm

    [2] 陈莉英, 姜洪波, 沈利沣, 等. 脉冲腔衰荡技术探测气溶胶消光系数的研究[J]. 激光技术, 2016, 40(2): 241-244. DOI: 10.7510/jgjs.issn.1001-3806.2016.02.019

    CHEN L Y, JIANG H B, SHEN L F, et al. Research of detection of aerosol extinction coefficient based on pulse cavity ring-down technology[J]. Laser Technology, 2016, 40(2): 241-244(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2016.02.019

    [3]

    ANDERSON D Z, FRISCH J C, MASSER C S. Mirror reflectometer based on optical cavity decay time[J]. Applied Optics, 1984, 23(8): 1238-1245. DOI: 10.1364/AO.23.001238

    [4]

    O'KEEFE A, DEACON D A G. Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources[J]. Review of Scientific Instruments, 1988, 59(12): 2544-2550. DOI: 10.1063/1.1139895

    [5] 刘亚萍, 张伟刚, 姜萌, 等. 光纤腔衰荡光谱技术及其最新进展[J]. 物理学进展, 2008, 28(4): 401-409. DOI: 10.3321/j.issn:1000-0542.2008.04.004

    LIU Y P, ZHANG W G, JIANG M, et al. Development and recent progress of fiber cavity ring-down spectroscopy[J]. Progress in Physics, 2008, 28(4): 401-409(in Chinese). DOI: 10.3321/j.issn:1000-0542.2008.04.004

    [6]

    WANG C. Fiber loop ringdown—a time-domain sensing technique for multi-function fiber optic sensor platforms: Current status and design perspectives[J]. Sensors, 2009, 9(10): 7595-7621. DOI: 10.3390/s91007595

    [7]

    WANG Y, MA G M, ZHENG D Y, et al. Gas concentration sensing based on fiber loop ring-down spectroscopy: A review[J]. IEEE Transactions On Instrumentation and Measurement, 2021, 70: 9509316.

    [8]

    STEWART G, ATHERTON K, YU H B, et al. An investigation of optical fiber amplifier loop for intra-cavity and ring-down cavity loss measurements[J]. Measurement Science and Technology, 2001, 12(7): 843-849. DOI: 10.1088/0957-0233/12/7/316

    [9] 李志全, 朱国芳, 陈曦, 等. 基于腔衰荡技术的光纤双环路一氧化碳浓度监测系统研究[J]. 光子学报, 2010, 39(3): 481-484. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201003023.htm

    LI Zh Q, ZHU G F, CHEN X, et al. Dual-loop carbon monoxide concentration measurement system based on cavity ring-down technology[J]. Acta Photonica Sinica, 2010, 39(3): 481-484(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201003023.htm

    [10]

    ZHU C G, WANG G W, ZHENG Z L, et al. A method for real-time monitoring of inherent system loss designed for FLRDS-based gas sensors[J]. IEEE Photonics Journal, 2016, 8(5): 1-8.

    [11]

    ZHAO Y J, CHANG J, NI J Sh, et al. Novel gas sensor combined active fiber loop ring-down and dual wavelengths differential absorption method[J]. Optics Express, 2014, 22(9): 11244-11253. DOI: 10.1364/OE.22.011244

    [12]

    ZHAO Y, BAI L, WANG Q. Gas concentration sensor based on fiber loop ring-down spectroscopy[J]. Optics Communications, 2013, 309: 328-332. DOI: 10.1016/j.optcom.2013.07.073

    [13]

    QIAN X L, ZHAO Y, ZHANG Y N, et al. Theoretical research of gas sensing method based on photonic crystal cavity and fiber loop ring-down technique[J]. Sensors and Actuators, 2016, B228(1): 665-672.

    [14]

    YE F, QI B, QIAN L. Continuous-wave fiber cavity ring-down measurements using frequency-shifted interferometry[J]. Optics Letters, 2011, 36(11): 2080-2082. DOI: 10.1364/OL.36.002080

    [15]

    TIAN H, ZHOU C M, FAN D, et al. Continuous-wave frequency-shifted interferometry cavity ring-down gas sensing with differential optical absorption[J]. IEEE Photonics Journal, 2015, 7(3): 1-10.

    [16] 范典, 陈矫, 吴志勇, 等. 基于频移干涉光纤腔衰荡技术的甲烷传感系统[J]. 传感技术学报, 2019, 32(1): 150-154. https://www.cnki.com.cn/Article/CJFDTOTAL-CGJS201901026.htm

    FAN D, CHEN J, WU Zh Y, et al. Methane sensing system based on frequency-shifted interferometry fiber cavity ring-down technology[J]. Chinese Journal of Sensors and Actuators, 2019, 32(1): 150-154(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CGJS201901026.htm

    [17]

    CHENG Ch F, YANG Zh Y, OU Y W, et al. Simultaneous measurement of gas composition and concentration combined fiber cavity ringdown and frequency-shifted interferometry[J]. Optical Fiber Technology, 2019, 48: 303-307. DOI: 10.1016/j.yofte.2019.01.032

    [18]

    YANG Zh Y, CHENG Ch F, LÜ H, et al. Multichannel continuous-wave fiber cavity ringdown gas sensing utilizing frequency-shifted interferometry[J]. Applied Optics, 2018, 57(35): 10224-10229.

    [19]

    YE F, QIAN L, QI B. Multipoint chemical gas sensing using frequency-shifted interferometry[J]. Journal of Lightwave Technology, 2009, 27(23): 5356-5364.

    [20] 陈泽浩, 基于频移干涉光纤腔衰荡技术的压力/应力传感方法研究[D]. 武汉: 湖北工业大学, 2020: 15-17.

    CHEN Z H. Pressure/strain sensing method based on frequency-shift interferometry fiber cavity ring-downtechnique[D]. Wuhan: Hubei University of Technology, 2020: 15-17(in Chinese).

图(6)
计量
  • 文章访问数:  6
  • HTML全文浏览量:  0
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-29
  • 修回日期:  2022-04-12
  • 发布日期:  2023-05-24

目录

    /

    返回文章
    返回