高级检索

激光诱导微纳米物质在1维载体上的输运

刘玉丽, 申健, 孙燕明, 李睿

刘玉丽, 申健, 孙燕明, 李睿. 激光诱导微纳米物质在1维载体上的输运[J]. 激光技术, 2023, 47(1): 140-146. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.022
引用本文: 刘玉丽, 申健, 孙燕明, 李睿. 激光诱导微纳米物质在1维载体上的输运[J]. 激光技术, 2023, 47(1): 140-146. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.022
LIU Yuli, SHEN Jian, SUN Yanming, LI Rui. Transport of micro-nano mass induced by laser on 1-D carriers[J]. LASER TECHNOLOGY, 2023, 47(1): 140-146. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.022
Citation: LIU Yuli, SHEN Jian, SUN Yanming, LI Rui. Transport of micro-nano mass induced by laser on 1-D carriers[J]. LASER TECHNOLOGY, 2023, 47(1): 140-146. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.022

激光诱导微纳米物质在1维载体上的输运

基金项目: 

辽宁省自然科学基金博士科研启动基金资助项目 20180540081

广东省自然科学基金面上项目 2021A1515012069

国家自然科学基金资助项目 51908366

详细信息
    作者简介:

    刘玉丽(1986-), 女, 硕士, 工程师, 现主要从事激光和碳材料相互作用研究

    通讯作者:

    申健, E-mail: m13942036212@163.com

  • 中图分类号: TN249

Transport of micro-nano mass induced by laser on 1-D carriers

  • 摘要: 为了探索微纳米物质在1维载体上的可控输运问题, 采用聚焦激光辐射输运载体获得温度梯度的方法, 进行了微纳米石蜡球在单根碳纳米线圈上输运问题的实验研究和理论分析。结果表明, 温度梯度可以驱动碳纳米线圈上的微纳米石蜡由高温区域向低温区域移动, 即发生输运现象; 调整激光的聚焦位置可以实现输运方向的可控, 调节聚焦激光输出功率可以实现输运距离和输运质量的可控; 激光电流为33.0 mA, 36.0 mA, 39.0 mA, 42.0 mA时, 微纳米石蜡球输运距离分别为0.69 μm, 1.40 μm, 2.00 μm, 2.50 μm。该研究为微纳米物质的可控输运提供了新方法, 对进一步研究微纳米物质输运问题是有帮助的。
    Abstract: In order to explore the controllable transport of micro-nano mass in 1-D materials, a method that generate thermal gradient on carbon nanocoil by focused laser rays was adopted. Micro-nano paraffin transport process along thermally-induced carbon nanocoil irradiated by focused laser rays was analyzed experimentally and theoretically. The results show that when the laser is focused on the carbon nanocoil, the micro-nano paraffin sphere can be moved from the high temperature region to the low temperature region. The paraffin transport process in a single direction or in both directions along the carbon nanocoil can be controlled by changing the position of laser radiation. The mass and distance transported along carbon nanocoil can be controlled by adjusting the laser power. When the laser current is respectively 33.0 mA, 36.0 mA, 39.0 mA, and 42.0 mA, the transport distance of the micro-nano paraffin is 0.69 μm, 1.40 μm, 2.00 μm and 2.50 μm, respectively. These results present a new method for micro-nano mass transporting controllably on 1-D materials.
  • 图  1   a—碳纳米线圈团簇的SEM图片b—单根碳纳米线圈的SEM图片c—激光聚焦后微纳米石蜡球的SEM图片d—碳纳米线圈的喇曼图谱

    Figure  1.   a—SEM images of CNC aggregation b—SEM images of an individual CNC c—SEM image of micro-nano paraffin spheres after laser focusing d—Raman shift of CNC

    图  2   实验装置图

    Figure  2.   Experimental set up of an optical tweezers system

    图  3   光诱导石蜡输运示意图

    Figure  3.   Diagram of paraffin transporting on a single CNC induced by laser

    图  4   微纳米石蜡球在输运载体上实现单方向输运的光学显微镜照片

    Figure  4.   Optical images of micro-nano paraffin transporting on conveyor irradiated by the focused laser rays in a single direction

    图  5   CCD摄像系统记录的微纳米石蜡球体在不同聚焦激光电流下输运距离的光学显微镜照片

    Figure  5.   Optical images of transmission distance of micro-nano paraffin with various laser currents

    图  6   CCD摄像系统记录的微纳米石蜡球的双方向输运过程的光学显微镜照片

    Figure  6.   Optical images of micro-nano paraffin focused by laser rays transporting on the conveyor in both directions

    图  7   红外碳纳米线圈在可见和红外光波段光学模拟

    Figure  7.   Simulation of CNCs irradiated by visible light and infrared light

    图  8   液相石蜡球在CNC基板表面所受界面张力模型示意图

    Figure  8.   Schematic diagram of interfacial tension for paraffin microsphere droplets on the surface of CNC substrate

    图  9   微流体通道内微米气泡的生成和输运

    Figure  9.   Optical images of micro-nano bubbles created and transported in fluidic micro-channel

    表  1   石蜡输运过程中的相关参数变化

    Table  1   Main parameters of paraffin transport process

    laser current/mA transport distance/μm paraffin diameter/μm current increment/mA distance increment/μm volume decrement/%
    33.0 0.69 2.40 3.0 0.71 56.0
    36.0 1.40 1.80 3.0 0.60 54.0
    39.0 2.00 1.40 3.0 0.50 60.0
    42.0 2.50
    下载: 导出CSV
  • [1] 贺思远. 纳通道中颗粒的输运与检测研究[D]. 北京: 中国科学院大学, 2016: 3-30.

    HE S Y. The transport and detection of nanoparticle in nanochannel[D]. Beijing: University of Chinese Academy of Sciences, 2016: 3-30 (in Chinese).

    [2]

    JOENSSON H N, SVAHN H A. Droplet microfluidics-a tool for single-cell analysis[J]. Angewandte Chemie International Edition, 2012, 51(49): 12176-12192. DOI: 10.1002/anie.201200460

    [3]

    EIJKEL J C T, BERG A V D. Nanofluidics: What is it and what can we expect from it[J]. Microfluidics and Nanofluidics, 2005, 1(3): 249-267. DOI: 10.1007/s10404-004-0012-9

    [4]

    SCHOCH R B, HAN J, RENAUD P. Transport phenomena in nanofluidics[J]. Reviews of Modern Physics, 2008, 80(3): 839-883. DOI: 10.1103/RevModPhys.80.839

    [5]

    NAIR P R, WU H A, JAYARAM A P N, et al. Unimpeded permeation of water through helium-leak-tight graphene-based membranes[J]. Science, 2012, 335(6067): 442-444. DOI: 10.1126/science.1211694

    [6]

    HOLT J K, GYU P H, WANG Y, et al. Fast mass transport through sub-2-nanometer carbon nanotubes[J]. Science, 2006, 312(5776): 1034-1037. DOI: 10.1126/science.1126298

    [7]

    HUMMER G, RASAIAH J C, NOWORYTAO J P. Water conduction through the hydrophobic channel of a carbon nanotube[J]. Nature, 2001, 414(6860): 188-190. DOI: 10.1038/35102535

    [8]

    SECCHI E, MARBACH S, NIGUōS A, et al. Massive radius-dependent flow slippage in carbon nanotubes[J]. Nature, 2016, 537(7619): 210-213. DOI: 10.1038/nature19315

    [9]

    FENG J, GRAF M, LIU K, et al. Single-layer MoS2 nanopores as nanopower generators[J]. Nature, 2016, 536(7615): 197-200. DOI: 10.1038/nature18593

    [10]

    FEBG J, LIU K, GRAF M, et al. Observation of ionic Coulomb blockade in nanopores[J]. Nature Materials, 2016, 15(8): 850-855. DOI: 10.1038/nmat4607

    [11]

    OU X, YU Y, WU R, et al. Shuttle suppression by polymer-sealed graphene-coated polypropylene separator[J]. ACS Applied Materials & Interfaces, 2018, 10(6): 5534-5542.

    [12]

    NAIR P R, WU H A, JAYARAM P N, et al. Unimpeded permeation of water through helium-leak-tight gra phene-based membranes[J]. Science, 2012, 335(6067): 442-444. DOI: 10.1126/science.1211694

    [13]

    ABRAHAM J, VASU K S, WILLIAMS C D, et al. Tunable sieving of ions using graphene oxide membranes[J]. Nature Nanotechnology, 2017, 12(6): 546-550. DOI: 10.1038/nnano.2017.21

    [14]

    YANG Q, SU Y, CHI C, et al. Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation[J]. Nature Materials, 2017, 16(12): 1198-1202. DOI: 10.1038/nmat5025

    [15]

    CHEN L, SHI G, SHEN J, et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing[J]. Nature, 2017, 550(7676): 380-383. DOI: 10.1038/nature24044

    [16]

    STEIN D, KRUITHOF M, DEKKER C. Surface-charge-governed ion transport in nanofluidic channels[J]. Physical Review Letters, 2004, 93(3): 035901. DOI: 10.1103/PhysRevLett.93.035901

    [17]

    MARTINS D, CHU V, PRAZERES D M F, et al. Ionic conductivity measurements in a SiO2 nanochannel with PDMS interconnects[J]. Procedia Chemistry, 2009, 1(1): 1095-1098. DOI: 10.1016/j.proche.2009.07.273

    [18]

    DUAN C, MAJUMDAR A. Anomalous ion transport in 2-nm hydrophilic nanochannels[J]. Nature Nanotechnology, 2010, 5(12): 848-852. DOI: 10.1038/nnano.2010.233

    [19]

    XIE Q, ALIBAKHSHI M A, JIAO S, et al. Fast water transport in graphene nanofluidic channels[J]. Nature Nanotechnology, 2018, 13(3): 238-245. DOI: 10.1038/s41565-017-0031-9

    [20] 王奉超, 朱银波, 吴恒安. 纳米通道受限液体的结构和输运[J]. 中国科学: 物理学力学天文学, 2018, 48(9): 094609. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201809009.htm

    WANG F Ch, ZHU Y B, WU H A. Structure and transport of confined liquid in nanochannels[J]. Scientia Sinica (Physica, Mecha-nica & Astronomica), 2018, 48(9): 094609(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201809009.htm

    [21]

    OYAZUA E, WALTHER J H, MEGARIDIS C M, et al. Carbon nanotubes as thermally induced water pumps[J]. ACS Nano, 2017, 11(10): 9997-10002. DOI: 10.1021/acsnano.7b04177

    [22]

    REGAN B C, ALONI S, RITCHIE R O, et al. Carbon nanotubes as nanoscale mass conveyors[J]. Nature, 2004, 428(6986): 924-927. DOI: 10.1038/nature02496

    [23]

    AMELIA B, RICCARDO R, EDUARDO R, et al. Subnanometer motion of cargoes driven by thermal gradients along carbon nanotubes[J]. Science, 2008, 320(5877): 775-778. DOI: 10.1126/science.1155559

    [24]

    SUN Y M, PAN L J, LIU Y L, et al. Micro-bubble generated by laser irradiation on an individual carbon nanocoil[J]. Applied Surface Science, 2015, 345: 428-432. DOI: 10.1016/j.apsusc.2015.03.153

    [25] 刘玉丽. 单根碳纳米线圈上的激光光力、光热转换及其应用的研究[D]. 大连: 大连理工大学, 2012: 26-52.

    LIY Y L. Photo-thermal and light to force conversions in single carbon nanocoils and their applications[D]. Dalian: Dalian University of Technology, 2012: 26-52(in Chinese).

    [26] 尹培琪, 王新兵, 武耀星, 等. 脉冲Nd∶YAG激光诱导水滴等离子体的实验研究[J]. 激光技术, 2020, 44(6): 726-731. DOI: 10.7510/jgjs.issn.1001-3806.2020.06.014

    YIN P Q, WANG X B, WU Y X, et al. Experimental study on water droplet plasma indu ced by pulse Nd∶YAG laser[J]. Laser Technology, 2020, 44(6): 726-731(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2020.06.014

    [27] 罗贤锋, 游利兵, 徐健, 等. 基于激光诱导击穿光谱的元素成像技术研究进展[J]. 激光技术, 2020, 44(1): 66-73. DOI: 10.7510/jgjs.issn.1001-3806.2020.01.012

    LUO X F, YOU L B, XU J, et al. Research progress of elemental imaging based on laser-induced breakdown spectroscopy[J]. Laser Technology, 2020, 44(1): 66-73(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2020.01.012

    [28]

    ZHAO Y P, WANG J Zh, HUANG H, et al. Growth of carbon nanocoils by porous α-Fe2O3/SnO2 catalyst and its buckypaper for high efficient adsorption[J]. Nano-Micro Letters, 2020, 12(2): 141-157.

    [29] 魏巍. 含纳米颗粒石蜡光学特性及其太阳能吸收性能初探[D]. 大庆: 东北石油大学, 2019: 15-20.

    WEI W. Research on optical properties and solar absorption properties of nanoparticle-containing paraffin[D]. Daqing: Northeast Petroleum University, 2019: 15-20(in Chinese).

    [30]

    MA H, PAN L J, ZHAO Q, et al. Thermal conductivity of a single carbon nanocoil measured by field-emission induced thermal radiation[J]. Carbon, 2011, 50(3): 778-783.

    [31] 王鹏. 碳纳米线圈的光力、光热特性研究及其作为柔性探针的应用[D]. 大连: 大连理工大学, 2019: 10-40.

    WANG P. Research on opt-mechanical and opt-thermal properties of carbon nanocoils and their applications as flexible probes[D]. Dalian: Dalian University of Technology, 2019: 10-40(in Ch-inese).

    [32] 胡定华, 许肖永, 林肯, 等. 石蜡/膨胀石墨/石墨片复合相变材料导热性能研究[J]. 工程热物理学报, 2021, 42(9): 2414-2418. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB202109027.htm

    HU D H, XU X Y, LIN K, et al. Study on heat conductivity of para-ffffin/expanded graphite/graphite sheet composite material[J]. Journal of Engineering Thermophysics, 2021, 42(9): 2414-2418 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB202109027.htm

    [33]

    WANG P, PAN L J, LI Ch W, et al. Highly efficient near-infrared photothermal conversion of a single carbon nanocoil indicated by cell ejection[J]. Journal of Physical Chemistry, 2018, C122(48): 27696-27701.

    [34]

    DARHUBER A A, VALENTNO J P, TROIAN S M, et al. Thermocapillary actuation of droplets on chemically patterned surfaces by programmable microheater arrays[J]. Journal of Microelectromechanical Systems, 2003, 12(6): 873-879.

    [35] 钟源. 液滴撞击不同固体表面动力学特性及热毛细迁移研究[D]. 南昌: 南昌大学, 2019: 39-442.

    ZHONG Y. Research on dynamic characteristics of droplets impacting different solid surfaces and thermocapillary migration[D]. Nanchang: Nanchang University, 2019: 39-442(in Chinese).

    [36] 高世桥, 刘海鹏. 毛细力学[M]. 北京: 科学出版社, 2010: 32-36.

    GAO Sh Q, LIU H P. Capillary mechanics[M]. Beijing: Science Press, 2010: 32-36(in Chinese).

    [37]

    METTU S, CHAUDHURY M K. Motion of drops on a surface induced by thermal gradient and vibration[J]. Langmuir, 2008, 24(19): 10833-10837.

  • 期刊类型引用(20)

    1. 刘志鹏,雷东,黄萌,陈豪威,方春华,胡涛,吕俊杰,李放. 激光清除输电线路树障效率影响因素试验研究. 应用激光. 2024(03): 223-229 . 百度学术
    2. 王帅,赵辉,姚登辉,李忠涛,代爱民. 输电线路激光融冰技术的应用现状及发展分析. 云南电力技术. 2024(02): 61-65 . 百度学术
    3. 方春华,胡涛,徐鑫,董晓虎,程绳,吴田,孙奥琪,张怡琳. 激光清除树障温度和效率影响因素分析. 应用激光. 2024(05): 106-114 . 百度学术
    4. 曾绍聪,高仕斌,于龙,王健,丁楚刚,詹睿. 接触网侵限异物检测与挂网异物清除技术综述. 铁道学报. 2024(07): 51-64 . 百度学术
    5. 关家华,凌忠标,陈君宇,叶蓓,谭家祺. 基于无人机技术的配网线路杆塔鸟巢清除装置研究. 电子制作. 2022(04): 98-100 . 百度学术
    6. 张志博,王一波,张梓奎,王华伟,张贵新,尤正军. 激光清障技术在电网中的应用现状与发展. 电力工程技术. 2022(02): 45-52+74 . 百度学术
    7. 徐鑫,方春华,智李,丁璨,董晓虎,程绳,孙维,陶玉宁. 线激光清除架空线路树障时温度和效率分析. 中国电力. 2022(05): 94-101 . 百度学术
    8. 孙夕彬,李勇,唐伟刚. 主网输变电设备漂浮物故障分析与隐患管控. 湖北电力. 2022(03): 106-112 . 百度学术
    9. 钱建国,魏立,李游,王伟玺,李晓明. 基于三维点云的输电线路分类去噪算法研究. 应用激光. 2022(11): 104-112 . 百度学术
    10. 王颂,李锐海,刘旭,景凤仁,刘爱华. 一种异物清除作业机器人机构的优化设计. 广东电力. 2021(01): 121-126 . 百度学术
    11. 徐鑫,方春华,智李,李景,丁璨,张文婷,董晓虎,程绳. 连续激光作用下瓷质绝缘子温度和热应力分析. 光电子·激光. 2021(01): 78-87 . 百度学术
    12. 杨波,刘传利,吴英迪,蔡亚芬. 使用智能终端控制激光异物清除设备. 电子技术应用. 2021(03): 51-54+60 . 百度学术
    13. 王楠,张秉良,张震,漆照,韩梁. 基于工业物联网的激光除异物装置安全管控技术. 山东电力技术. 2021(05): 42-47 . 百度学术
    14. 吴军,程绳,董晓虎,范杨,林磊,方春华,徐鑫. 线激光清除输电线路树障温度场和应力场分析. 湖北电力. 2021(02): 14-20 . 百度学术
    15. 徐鑫,方春华,李景,丁璨,袁田,董晓虎,普子恒,吴田,黎鹏. 激光清除输电线路异物时异物烧蚀特性分析. 光电子·激光. 2021(06): 637-644 . 百度学术
    16. 刘雷,刘霞,单宁. 高压输电线异物激光清除三维仿真研究. 激光与红外. 2021(10): 1286-1293 . 百度学术
    17. 吴军,程绳,董晓虎,范杨,林磊,方春华,李承熹,徐鑫. 基于改进YOLO算法的激光清异场景目标检测方法. 湖北电力. 2021(04): 59-70 . 百度学术
    18. 高峰,刘阳,肖茂森,唐露甜. 高压输电线聚合物激光清除系统设计与实验研究. 激光与红外. 2020(11): 1328-1332 . 百度学术
    19. 方春华,周秋雨,李景,张文婷,彭智,王康,普子恒,方雨. 瓷质绝缘子表面激光辐射温度和应力特性研究. 高压电器. 2019(06): 151-156+163 . 百度学术
    20. 楼平,岳灵平,李龙. 新型激光除异物技术在特高压输电线路的应用. 浙江电力. 2018(06): 6-9 . 百度学术

    其他类型引用(12)

图(9)  /  表(1)
计量
  • 文章访问数:  8
  • HTML全文浏览量:  0
  • PDF下载量:  5
  • 被引次数: 32
出版历程
  • 收稿日期:  2022-01-18
  • 修回日期:  2022-03-23
  • 发布日期:  2023-01-24

目录

    /

    返回文章
    返回