高级检索

平行度误差激光准直法测量技术研究

王红敏, 罗自赢, 李蕾, 彭俊玲

王红敏, 罗自赢, 李蕾, 彭俊玲. 平行度误差激光准直法测量技术研究[J]. 激光技术, 2022, 46(5): 674-679. DOI: 10.7510/jgjs.issn.1001-3806.2022.05.016
引用本文: 王红敏, 罗自赢, 李蕾, 彭俊玲. 平行度误差激光准直法测量技术研究[J]. 激光技术, 2022, 46(5): 674-679. DOI: 10.7510/jgjs.issn.1001-3806.2022.05.016
WANG Hongmin, LUO Ziying, LI Lei, PENG Junling. Study on measurement technique of parallelism error by laser collimation[J]. LASER TECHNOLOGY, 2022, 46(5): 674-679. DOI: 10.7510/jgjs.issn.1001-3806.2022.05.016
Citation: WANG Hongmin, LUO Ziying, LI Lei, PENG Junling. Study on measurement technique of parallelism error by laser collimation[J]. LASER TECHNOLOGY, 2022, 46(5): 674-679. DOI: 10.7510/jgjs.issn.1001-3806.2022.05.016

平行度误差激光准直法测量技术研究

详细信息
    作者简介:

    王红敏(1967-), 女, 副教授, 现主要从事激光与光电精密测量技术研究。E-mail: yswhm@126.com

  • 中图分类号: TN247;TL816+.5

Study on measurement technique of parallelism error by laser collimation

  • 摘要: 为了实现平行度误差的精确测量, 提出了基于位置敏感探测器(PSD)激光准直法的平行度误差测量方法, 并设计了实验测量系统。该系统利用倒置望远镜结构二次透镜变换的方法, 对准直激光束的发散角和光斑大小进行平衡, 通过光学五棱镜转折光路, 由PSD将测量位移经信号调理电路和数据采集及处理系统, 实时得到测点相对于基准的位置, 再以最小包容区域法快速评定出被测要素和基准要素两者之间的平行度误差。结果表明, 系统相对不确定度为0.077%, 具有较高的测量精度。该研究为平行度误差的精密测量技术提供了有效测量方法, 具有一定的现实指导意义。
    Abstract: In order to realize the precise measurement of the parallelism error, the laser collimating method of parallelism error measuring method based on position sensitive device (PSD) was proposed, and the experimental measurement system was designed. The divergence angle and spot size of the alignment laser beam were balanced by using the method of the second lens transformation of the inverted telescope structure. The optical path was turned by using an optical pentaprism, and then the position of a point relative to the measurement reference can be obtained in real time by PSD signal conditioning circuit as well as data acquisition and processing system. Then, the parallelism error between the toleranced feature and the datum feature can be quickly evaluated by using the minimum zone method, and the theoretical analysis and experimental verification were carried out. The experimental results show that the relative uncertainty of the measuring system is 0.077%, which has high measurement accuracy. It provides an effective measurement method for the precision measurement technology of parallelism error and has certain practical guiding significance.
  • Figure  1.   Principle of laser alignment measurement

    Figure  2.   Flow chart of measuring system

    Figure  3.   Propagation of Gaussian beam

    Figure  4.   Lens transformation of Gaussian beam

    Figure  5.   Collimation of Gaussian beams

    Figure  6.   Schematic diagram of 2-D-PSD

    Figure  7.   Design of parallelism measuring device

    Figure  8.   Schematic diagram of parallelism error evaluation(take parallel lines for example)

    Table  1   Parallelism error evaluation results and analysis

    number n parallelism error fi/μm residual error vi/μm
    1 14.347 0.0085
    2 14.401 0.0625
    3 14.353 0.0145
    4 14.329 -0.0095
    5 14.288 -0.0505
    6 14.332 -0.0065
    7 14.316 -0.0225
    8 14.294 -0.0445
    9 14.373 0.0345
    10 14.352 0.0135
    下载: 导出CSV
  • [1]

    HE B, WEN Y P. Design of hydraulic cylinder straightness error detection device based on pneumatic and laser collimation[J]. Machine Tool & Hydraulics, 2017, 45(15): 133-136 (in Chinese).

    [2]

    LIU Sh G, YANG X J, ZHENG W H. Deep shaft verticality detection method based on laser collimation[J]. Safety in Coal Mines, 2019, 50(12): 123-126(in Chinese).

    [3]

    CHEN H F, TANG L, ZHANG Sh, et al. Effects of position sensitive detector on laser tracing measurement system[J]. Chinese Journal of Lasers, 2020, 47(11): 1104001(in Chinese). DOI: 10.3788/CJL202047.1104001

    [4]

    ZHOU B Y. Development of small angle measuring system for peg-top based on PSD[D]. Wuhan: Huazhong University of Science and Technology, 2005: 19-30 (in Chinese).

    [5]

    LIU Z Y, ZHANG J, DENG F M. Research of on-line monitoring of rail distance system based on position sensitive detector[J]. Laser Technology, 2020, 44(2): 183-189(in Chinese).

    [6]

    LI J L. Research on remote measurement and control for displacement based on position sensitive detector[D]. Wuhan: Huazhong University of Science and Technology, 2019: 12-29 (in Chinese).

    [7]

    JIANG X D, YU J Y, ZHU L K. Research of combined navigation technology based on position sensitive detectors[J]. Laser Technology, 2019, 43(3): 335-340(in Chinese).

    [8]

    LOU Zh B, ZHAO H, LIU Q, et al. Two-dimensional rotation angle dynamic measurement system combining laser collimation[J]. Optics and Precision Engineering, 2019, 27(3): 561-568(in Chinese). DOI: 10.3788/OPE.20192703.0561

    [9]

    YIN Zh Y, QIANG X W, WANG Y F, et al. Research of laser diode beam collimation based on astigmatism surface microlens[J]. Laser Technology, 2015, 39(4): 458-461(in Chinese).

    [10]

    HE F, ZHANG W T, XIONG X M. 3-D simulation analysis of laser-collimating Cr atomic beam[J]. Laser & Infrared, 2015, 45(6): 605-610(in Chinese).

    [11]

    ZHANG L G, XIONG Zh, FENG W, et al. Laser tracking attitude angle measurement method based on vision and laser collimation[J]. Chinese Journal of Scientific Instrument, 2020, 41(8): 30-36(in Chinese).

    [12]

    YU D Y, TAN H Y. Engineering optics[M]. 4th ed. Beijing: Ch-ina Machine Press, 2016: 165-170 (in Chinese).

    [13]

    WANG H M. Engineering optics[M]. 2nd ed. Beijing: Peking University Press, 2018: 160-165 (in Chinese).

    [14]

    CAI Y Y. Measurement of angular position error based on laser collimation and error model[D]. Beijing: Beijing Jiaotong University, 2017: 16-24 (in Chinese).

    [15]

    DENG H Y. Research on bending measurement method of double laser collimated CCD[J]. Ship Science and Technology, 2019, 41(16): 46-48(in Chinese).

    [16]

    HAN J H. Interchangeability and technical measurement[M]. 2nd ed. Beijing: China Machine Press, 2018: 19-26 (in Chinese).

    [17]

    LUO L M, LI A X, LIU J. Evaluation of uncertainty in measurement results of chassis dynamometer[J]. China Metrology, 2019, 44(2): 113-114(in Chinese).

    [18]

    ZHANG Sh Y, WANG H L, QIN Zh J, et al. Research on all-fiber acousto-optic modulation roughness correlation measurement technology[J]. Laser Journal, 2020, 41(2): 25-28(in Chinese).

    [19]

    CAO M, WANG E, LI B, et al. Analysis of calibration and uncertainty of FBG displacement sensor[J]. Sensors and Microsystems, 2016, 35(4): 35-37(in Chinese).

    [20]

    LIU K, WANG H L, SUN S Q. Study on electron modulation laser coherent shaft vibration measurement technology[J]. Laser Technology, 2018, 42(4): 466-469(in Chinese).

    [21]

    CAO Q Q, WANG H L, SONG H Y, et al. Research of radial run-out differential measurement technology with all fiber acousto-optic modulation[J]. Laser Technology, 2020, 44(1): 50-53(in Chinese).

图(8)  /  表(1)
计量
  • 文章访问数:  8
  • HTML全文浏览量:  2
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-29
  • 修回日期:  2021-08-29
  • 发布日期:  2022-09-24

目录

    /

    返回文章
    返回