高级检索

级联FPI-MZI复合干涉光纤传感器双参数特性研究

龚文慧, 张雄星, 康家雯

龚文慧, 张雄星, 康家雯. 级联FPI-MZI复合干涉光纤传感器双参数特性研究[J]. 激光技术, 2022, 46(5): 618-623. DOI: 10.7510/jgjs.issn.1001-3806.2022.05.006
引用本文: 龚文慧, 张雄星, 康家雯. 级联FPI-MZI复合干涉光纤传感器双参数特性研究[J]. 激光技术, 2022, 46(5): 618-623. DOI: 10.7510/jgjs.issn.1001-3806.2022.05.006
GONG Wenhui, ZHANG Xiongxing, KANG Jiawen. Research on dual-parameter characteristics of composite interference fiber sensor based on cascade FPI-MZI[J]. LASER TECHNOLOGY, 2022, 46(5): 618-623. DOI: 10.7510/jgjs.issn.1001-3806.2022.05.006
Citation: GONG Wenhui, ZHANG Xiongxing, KANG Jiawen. Research on dual-parameter characteristics of composite interference fiber sensor based on cascade FPI-MZI[J]. LASER TECHNOLOGY, 2022, 46(5): 618-623. DOI: 10.7510/jgjs.issn.1001-3806.2022.05.006

级联FPI-MZI复合干涉光纤传感器双参数特性研究

基金项目: 

陕西省自然科学基础研究计划资助项目 2020JM-560

陕西省教育厅重点科学研究计划资助项目 20JY028

详细信息
    作者简介:

    龚文慧(1998-), 女, 硕士研究生, 主要从事光纤传感方面的研究

    通讯作者:

    张雄星, E-mail: 605703946@qq.com

  • 中图分类号: TP212.1+4;TN253

Research on dual-parameter characteristics of composite interference fiber sensor based on cascade FPI-MZI

  • 摘要: 为了实现工业生产过程中温度和溶液质量分数的同时测量和传感检测, 提出了一种由法布里-珀罗干涉仪(FPI)和马赫-曾德尔干涉仪(MZI)级联干涉结构构成的双参数传感器。该传感器由融合在一起的单模光纤(SMF)和空芯光纤(HCF)组成。采用同时测量FPI反射光谱和MZI透射光谱的特征波长位移的方法, 获得了FPI和MZI对温度和折射率的灵敏度差, 建立了传感器温度-质量分数灵敏度矩阵, 实现了传感器双参数的测量。结果表明, 在40℃~150℃的温度范围内, FPI的温度敏感度为10pm/℃, 而MZI的对温度不敏感; 在质量分数0.05~0.40的范围内, FPI对折射率不敏感, 而MZI质量分数灵敏度是232.3nm/RIU; 该传感器可以实现温度与溶液质量分数的同时测量。该研究为石油、化工、电力、钢铁、机械等加工行业中双参数的动态测量提供了参考。
    Abstract: In order to achieve the simultaneous measurement and sensing detection of temperature and solution mass fraction in the industrial production process, a new dual-parameter sensor, which was composed of Fabry-Perot interference (FPI) and Mach-Zehnder interference (MZI) cascading interference structure was proposed. This new type of dual-parameter sensor cascade structure was composed of a single mode fiber (SMF) and a hollow core fiber (HCF) fused together. A method of simultaneously measuring the characteristic wavelength shift of the FPI reflection spectrum and the MZI transmission spectrum was adopted, and then the sensitivity difference between FPI and MZI to temperature and refractive index was obtained. The measurement of dual parameters of the sensor was realized by establishing the sensor temperature-mass fraction sensitivity matrix. The results show that the temperature sensitivity of FPI is 10pm/℃ in the temperature range of 40℃~150℃, while MZI is not sensitive to temperature. In the range of mass fraction 0.05~0.40, FPI is not sensitive to refractive index, while the sensitivity of MZI mass fraction is 232.3nm/RIU. The temperature and solution mass fraction can be measured by using this sensor. The study provides a reference for the dynamic measurement of dual-parameter in the processing industries such as petroleum, chemical, electricity, steel, and machinery.
  • Figure  1.   Dual-parameter measurement sensor structure diagram

    Figure  2.   Microstructure diagram of a dual-parameter measurement sensor

    Figure  3.   Sensor temperature experimental test system

    Figure  4.   FPI reflection spectrum of sensor temperature experiment

    Figure  5.   MZI transmission spectrum of sensor temperature experiment

    Figure  6.   FPI wavelength drift diagram in the 1575nm~1580nm band

    Figure  7.   MZI wavelength drift diagram in the 1560nm~1600nm band

    Figure  8.   The response curve of the sensor to the wavelength change in different temperature

    Figure  9.   Sensor mass fraction experimental device diagram

    Figure  10.   FPI reflection spectrum of sensor mass fraction experiment

    Figure  11.   MZI transmission spectrum of sensor mass fraction experiment

    Figure  12.   FPI wavelength drift at different mass fractions in the 1560nm~1570nm band

    Figure  13.   MZI wavelength drift at different mass fractions in the 1550nm~1620nm band

    Figure  14.   Response curve of the sensor to the wavelength change in solutions with different refractive index

    Table  1   Solution mass fraction refractive index table

    group mass fraction w refractive index
    1 0.05 1.340
    2 0.10 1.348
    3 0.15 1.356
    4 0.20 1.364
    5 0.25 1.373
    6 0.30 1.381
    7 0.35 1.389
    8 0.40 1.397
    下载: 导出CSV
  • [1]

    FU G W, LI Y P, LI Q F, et al. Temperature insensitive vector bending sensor based on asymmetrical cascading SMF-PCF-SMF structure[J]. IEEE Photonics Journal, 2017, 9(3): 7103114.

    [2]

    ZHANG W, HAO J Q, DONG M L, et al. A dual-parameter sensor for strain and temperature measurement featuring cascaded LPFG-FP structure[J]. Optik, 2018, 171: 632-641. DOI: 10.1016/j.ijleo.2018.05.133

    [3]

    HE W, FANG Y T, ZHU L Q, et al. Optical fiber interference sensor based on fiber ending micro-groove fabricated by femtosecond laser[J]. Optik, 2018, 158: 1295-1301. DOI: 10.1016/j.ijleo.2018.01.014

    [4]

    COSTA G K B, GOUVÊA P M P, SOARES L M B, et al. In-fiber Fabry-Perot interferometer for strain and magnetic field sensing[J]. Optics Express, 2016, 24(13): 14690-14696. DOI: 10.1364/OE.24.014690

    [5]

    TAN C Y, HUANG Y X. Dependence of refractive index on mass fraction and temperature in electrolyte solution, polar solution, nonpolar solution, and protein solution[J]. Journal of Chemical & Engineering Data, 2015, 60(10): 2827-2833.

    [6]

    GAO X D, PENG J K, LV D J, et al. Optical fiber temperature sensor based on Fabry-Perot coating interference[J]. Infrared and Laser Engineering, 2018, 47 (1): 0122002 (in Chinese). DOI: 10.3788/IRLA201847.0122002

    [7]

    LIU Ch, WANG Sh, LIANG Y J, et al. Design and preliminary experiment of optical fiber F-P pressure sensing system working in wind tunnel[J]. Infrared and Laser Engineering, 2018, 47(7): 0722002 (in Chinese). DOI: 10.3788/IRLA201847.0722002

    [8]

    LIU Y, QU Sh L. Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser-induced water breakdown for refractive index sensing[J]. Applied Optics, 2014, 53(3): 469-474. DOI: 10.1364/AO.53.000469

    [9]

    KAI B X, YANG Ch, BIAN H M, et al. Humidity influence on embedded fiber Bragg grating strain sensors[J]. Infrared and Laser Engineering, 2018, 47 (s1): S122007 (in Chinese).

    [10]

    BIAN J Ch, LANG T T, YU W J, et al. Study of fiber sensor for the simultaneous measurement of temperature and strain based on Mach-Zehnder interferometer[J]. Journal of Optoelectronics·Laser, 2015, 26 (11): 2169 -2174 (in Chinese).

    [11]

    ZHANG G L, YANG M H, DAI Y T. Fabry-Perot fiber tip sensor based on an inner air-cavity for refractive index sensing[J]. Chin-ese Optics Letters, 2014, 12 (A01): 77-79.

    [12]

    YAO Q Q, MENG H Y, WANG W, et al. Simultaneous measurement of refractive index and temperature based on a core-offset Mach-Zehnder interferometer combined with a fiber Bragg grating[J]. Sensors & Actuators A Physical, 2014, 209: 73-77. https://www.sciencedirect.com/science/article/pii/S0924424714000193

    [13]

    DASH J N, JHA R. Fabry-Perot based strain insensitive photonic crystal fiber modal interferometer for inline sensing of refractive index and temperature[J]. Applied Optics, 2015, 54(35): 10479-10486. DOI: 10.1364/AO.54.010479

    [14]

    LI X G, ZHAO Y, CAI L, et al. Simultaneous measurement of RI and temperature with a FP and Mach-Zehnder composite interferometer[J]. IEEE Photonics Technology Letters, 2016, 28(17): 1839-1842. DOI: 10.1109/LPT.2016.2573828

    [15]

    SUN L L, QIN J, TONG Zh R, et al. Simultaneous measurement of refractive index and temperature based on down-taper and thin-core fiber[J]. Optics Communications, 2018, 426: 506-510. DOI: 10.1016/j.optcom.2018.06.004

    [16]

    ZHOU K P, HE W, ZHANG W, et al. Dual-parameter characte-rization based on all-fiber waist-enlarged-bitapers MZ cascaded PCF-FP[J]. Infrared and Laser Engineering, 2019, 48(7): 0717004 (in Chinese). DOI: 10.3788/IRLA201948.0717004

    [17]

    LI D, HE W, LOU X P, et al. Simultaneous measurement of temperature and alcohol solution mass fraction based on the cascade of FBG and MZI[J]. Chinese Journal of Scientific Instrument, 2017, 38(12): 3020-3027 (in Chinese).

    [18]

    MA Q F, NI K, HUANG R, et al. Simultaneous temperature and refractive index measurement based on optical fiber sensor[C/OL]. (2016-09)[2017-03-13]. https://www.researchgate.net/publication/315512906_Simultaneous_temperature_and_refractive_index_measurement_based_on_optical_fiber_sensor.

    [19]

    HUA Z M, LI Y Q, WANG Sh K, et al. Sensitization design of fiber Bragg grating liquid dual-parameter sensor[J]. Laser Technology, 2022, 46(3): 337-343(in Chinese).

  • 期刊类型引用(4)

    1. 曾胜财,甘亮勤. 编码法制彩色动态全息. 激光技术. 2021(02): 229-232 . 本站查看
    2. 李凯勇. 机器学习的光照不均图像边缘检测系统. 激光杂志. 2021(03): 130-134 . 百度学术
    3. 于琳琳. 基于激光全息技术的漆画无损修复研究. 激光杂志. 2021(12): 207-211 . 百度学术
    4. 张源峰,程恩. 光学图像信息多标记特征分层识别系统设计. 激光杂志. 2020(07): 209-212 . 百度学术

    其他类型引用(0)

图(14)  /  表(1)
计量
  • 文章访问数:  7
  • HTML全文浏览量:  2
  • PDF下载量:  7
  • 被引次数: 4
出版历程
  • 收稿日期:  2021-09-07
  • 修回日期:  2021-11-03
  • 发布日期:  2022-09-24

目录

    /

    返回文章
    返回