Review on radiation features of laser-induced plasma
-
摘要: 激光诱导等离子体作为一种宽光谱辐射源,能够产生X射线、紫外、可见、红外、太赫兹以及微波波段的辐射,可应用于天体物理、惯性约束核聚变、生物医学、材料科学、光谱分析、环境工程、信息技术、超快技术、光刻技术、成像技术、雷达技术、半导体技术等众多领域,具有较高的实用价值。迄今为止,有关激光诱导等离子体辐射特性的文献报道大多集中于描述激光与物质在单一波段的相互作用,对辐射的产生机理还未完全掌握,对完整光谱的研究综述依然比较缺乏。从电磁辐射光谱及其辐射机制的角度,对激光诱导等离子体的辐射特性做出了系统的梳理分类,对国内外相关团队的研究成果进行了总结和分析,特别从不同视角探究了等离子体与光谱辐射之间的物理关系。介绍了激光诱导等离子体各个波段的辐射特点,并讨论了影响辐射的相关因素。最后,对红外波段和太赫兹波段的研究前景进行了展望。Abstract: As a radiation source with the wide spectrum, laser-induced plasma can produce X-ray, ultraviolet, visible, infrared, terahertz, and microwave radiation. It has high practical value and can be used in astrophysics, inertial confinement fusion, biomedicine, materials science, spectral analyses, environmental engineering, information technology, ultrafast technology, lithography technology, imaging technology, radar technology, and semiconductor technology, etc. Up to now, most of the literatures about the radiation characteristics of laser-induced plasma concentrate on the interaction between lasers and matter in a certain wave band, while the mechanism of radiation production is not fully understood, and there is still a lack of comprehensive introductions of the researches on a wide spectrum. The radiation characteristics of laser-induced plasma are systematically classified from the point of view of both electromagnetic radiation spectra and radiation mechanisms in this review. The research results of relevant teams at home and abroad are summarized and analyzed, especially the physical relationship between plasma and spectral radiation is explored from different perspectives. The radiation characteristics of laser-induced plasma in various bands are introduced, and the related factors affecting the radiation are discussed. Finally, the research prospect of infrared band and terahertz band are prospected.
-
Keywords:
- spectroscopy /
- radiation spectrum /
- radiation mechanism /
- laser-induced plasma
-
-
图 1 铝激光等离子体X射线光谱[16]
a—纳秒激光产生b—飞秒激光产生
图 2 实验装置示意图[26]
图 3 激光诱导放电极紫外光谱探测实验装置[29]
图 4 激光辐照结构靶等离子体极紫外光源实验装置图和辐射光谱图[30]
图 5 激光诱导铜等离子体的辐射光谱[32]
图 6 实验光路图[42]
图 7 激光氮气等离子体光谱[42]
图 8 实验装置图[45]
图 9 样品温度为20℃时的发射光谱光谱[45]
图 10 纳秒激光诱导气体等离子体近红外辐射实验装置[54]
图 11 80kPa气压下激光诱导氮气、空气等离子体光谱[54]
图 12 激光驱动太赫兹辐射的天线模型图[59]
图 13 实验光路图[61]
图 14 太赫兹能量和激光-太赫兹能量转换效率随激光能量的变换关系图[61]
图 15 实验光路图[66]
图 16 实验装置和太赫兹光谱[67]
图 17 实验装置示意图[73]
图 18 激光等离子体的微波辐射机制[75]
图 19 实验示意图[76]
图 20 实验布局图和不同激光强度下4个方向上对应的辐射电场峰幅值[80]
表 1 各研究团队得到的激光等离子体X射线辐射结果
物质 激光功率密度/(W·cm-2) 激光脉宽/fs 光谱范围/nm 参考文献 碱金属卤化物 约1015 1.58×102 0.041~0.41 [8] Mo 1.2×1014,2.6×109 1.5×105, 1×107 1~5 [9] 气溶胶 约1014 1.1×106~1.3×106 2~5 [10] Bi 1.5×1013,1.4×1014 1.5×105 1~7 [11] Hf,Ta 2.3×1014,1.8×1012 1.7×105, 1×107 1~7 [12] Gd,Tb 8.9×1015~3.8×1011 1.5×105 6~7 [13] Pt 4.1×1011~1.4×1013 1.2×105~4×106 1~8 [14] Hf 1×1014 1.5×105 1~8.5 [15] Al,Cu 8.9×1015,3.8×1011 4.5×101, 6×106 约10 [16] Si 约1016 1.6×102 2~14 [17] 元素周期表中第6号元素~第79号元素对应的材料 约1014 2.5×105 0.5~20 [18] KAlSi3O8 约1016 4.80×105 2~19 [19] Al,Fe,Cu,W 5.6×1011 8×106 10~40 [20] -
[1] BEILIS I I. Laser plasma generation and plasma interaction with ablative target[J]. Laser and Particle Beams, 2007, 25(1): 53-63. DOI: 10.1017/S0263034607070097
[2] GIACOMO A D, DELL'AGLIO M, GAUDIUSO R, et al. Effects of the background environment on formation, evolution and emission spectra of laser-induced plasmas[J]. Spectrochimica Acta, 2012, B78: 1-19.
[3] FREEMAN J R, HARILAL S S, DIWAKAR P K, et al. Comparison of optical emission from nanosecond and femtosecond laser produced plasma in atmosphere and vacuum conditions[J]. Spectrochimica Acta, 2013, B87: 43-50.
[4] CHAUDHARY K, RIZVI S Z H, ALI J. Laser-induced plasma and its applications[C]//Plasma Science and Technology-Progress in Physical States and Chemical Reaction. Durham, USA: Instrument Society of America, 2016: 259-291.
[5] WANG X F, PACHTMAN A, XU Zh Zh, et al. Laser plasma X-ray emission from 5 to 200[J]. Acta Physica Sinica, 1990, 39(6): 922-926(in Chinese).
[6] GIULIETTI D, GIZZI L A. X-ray emission from laser-produced plasmas[J]. Rivista Del Nuovo Cimento, 1998, 21(10): 1-89. DOI: 10.1007/BF02874624
[7] CANNAVÒ A, TORRISI L, CECCIO G, et al. Characterization of X-ray emission from laser generated plasma[C]//Plasma Physics by Laser and Application. Paris, France: Edition Diffusion Press Science, 2018, 167: 03004.
[8] KOROLIOV A, REKLAITIS J, VARSOCKAJA K, et al. X-ray pulse emission of alkali metal halide salts irradiated by femtosecond laser pulses[J]. Applied Physics, 2020, B126(144): 1-7.
[9] LOKASANI R, ARAI G, KONDO Y, et al. Soft X-ray emission from molybdenum plasmas generated by dual laser pulses[J]. Applied Physics Letters, 2016, 109(19): 194103. DOI: 10.1063/1.4967310
[10] WEGRZYNSKI Ł, BARTNIK A, WACHULAK P, et al. Laser-produced plasma soft X-ray source based on an aerosol target[J]. Phy-sics of Plasmas, 2020, 27(7): 073102. DOI: 10.1063/5.0005933
[11] WU T, HIGASHIGUCHI T, LI B W, et al. Spectral investigation of highly ionized bismuth plasmas produced by subnanosecond Nd ∶YAG laser pulses[J]. Journal of Physics, 2016, B49(3): 035001.
[12] LI B W, OTSUKA T, SOKELL E, et al. Characteristics of laser produced plasmas of hafnium and tantalum in the 1-7 nm region[J]. The European Physical Journal, 2017, D71: 278.
[13] YIN L, WANG H Ch, REAGAN B A, et al. 6.7-nm emission from Gd and Tb plasmas over a broad range of irradiation parameters using a single laser[J]. Physical Review Applied, 2016, 6(3): 034009. DOI: 10.1103/PhysRevApplied.6.034009
[14] HARA H, ARAI G, KONDO Y, et al. Characteristics of the soft X-ray emission from laser-produced highly charged platinum plasmas[J]. Applied Physics Express, 2016, 9(6): 066201. DOI: 10.7567/APEX.9.066201
[15] HE J, WU T, YANG L. Study on ultraviolet radiation characteristics of pulse laser-induced hafnium plasma[J]. Laser & Optoelectronics Progress, 2020, 57(19): 191402(in Chinese).
[16] ZHONG F Ch, DENG J, ZHANG Zh Q, et al. Characteristic of plasma X-ray emission generated by femtosecond and nanosecond laser pulses[J]. Acta Optica Sinica, 1999, 19(3): 364-368(in Ch-inese).
[17] MURNANE M M, KAPTEYN H C, ROSEN M D, et al. Ultrafast X-ray pulses from laser-produced plasmas[J]. Science, 1991, 251(4993): 531-536. DOI: 10.1126/science.251.4993.531
[18] CHEN Sh Sh, LI Y L, XU Zh Zh, et al. Soft X-ray emission from 1.06μm laser plasmas and its atomic number dependence[J]. Acta Optica Sinica, 1992, 12(1): 27-32(in Chinese).
[19] RYAZANTSEV S N, SKOBELEV I Y, FILIPPOV E D, et al. Precise wavelength measurements of potassium He- and Li-like satellites emitted from the laser plasma of a mineral target[J]. Matter and Radiation at Extremes, 2021, 6(1): 014402. DOI: 10.1063/5.0019496
[20] GUO Y B, PAN Sh F. Study of soft X-ray pulses from a repetitively laser-produce plasma[J]. Chinese Journal of Light Scattering, 1997, 9(1): 17-23(in Chinese).
[21] PHUOC K T, ROUSSE A, PITTMAN M, et al. X-ray radiation from nonlinear Thomson scattering of an intense femtosecond laser on relativistic electrons in a helium plasma[J]. Physical Review Le-tters, 2003, 91(19): 195001. DOI: 10.1103/PhysRevLett.91.195001
[22] ZHAO T Z, BATSON T, HOU B, et al. Characterization of hard X-ray sources produced via the interaction of relativistic femtosecond laser pulses with metallic targets[J]. Applied Physics, 2019, B125(8): 1-9.
[23] FILIPPOV E D, MAKAROV S S, BURDONOV K F, et al. Enhanced X-ray emission arising from laser-plasma confinement by a strong transverse magnetic field[J]. Scientific Reports, 2021, 11: 8180. DOI: 10.1038/s41598-021-87651-8
[24] KRYGIER A, KEMP G E, COPPARI F, et al. Optimized continuum X-ray emission from laser-generated plasma[J]. Applied Physics Letters, 2020, 117(25): 251106. DOI: 10.1063/5.0033629
[25] VERSOLATO O O. Physics of laser-driven tin plasma sources of EUV radiation for nanolithography[J]. Plasma Sources Science and Technology, 2019, 27(7): 102923.
[26] WU T, WANG X B, WANG Sh Y, et al. Characteristics of extreme ultraviolet emission from tin plasma using CO2 laser for lithography[J]. Spectroscopy and Spectral Analysis, 2012, 32(7): 1729-1733(in Chinese).
[27] SU M G, MIN Q, CAO S Q, et al. Evolution analysis of EUV radiation from laser-produced tin plasmas based on a radiation hydrodynamics model[J]. Scientific Reports, 2017, 7: 45212. DOI: 10.1038/srep45212
[28] WANG J W, WANG X B, ZUO D L. Investigation of plume of laser-induced discharge plasma[J]. Laser Technology, 2020, 44(2): 173-177(in Chinese).
[29] WANG J W, WANG X B, ZUO D L, et al. Characteristics of discharge and beyong extreme ultraviolet spectra of laser induced discharge gadolinium plasma[J]. Optics and Laser Technology, 2021, 138: 106940.
[30] LI Zh G, DOU Y P, XIE Zh, et al. Research on characteristics of extreme ultraviolet emission from laser produce plasma on structured Sn target[J]. Chinese Journal of Lasers, 2021, 48(16): 1601005(in Chinese). DOI: 10.3788/CJL202148.1601005
[31] SHIMADA Y, NISHIMURA H, NAKAI M, et al. Characterization of extreme ultraviolet emission from laser-produced spherical tin plasma generated with multiple laser beams[J]. Applied Physics Le-tters, 2005, 86(5): 051501. DOI: 10.1063/1.1856697
[32] WU L Zh, SHEN R Q, XU J, et al. Ultraviolet spectroscopic study of laser-induced Cu plasmas[J]. Journal of Atomic and Molecular Physics, 2010, 27(1): 117-122(in Chinese).
[33] ZHENG P Ch, LIU H D, WANG J M, et al. Study on time evolution process of laser-induced aluminum alloy plasma[J]. Chinese Journal of Lasers, 2014, 41(10): 1015001(in Chinese). DOI: 10.3788/CJL201441.1015001
[34] WU L, SU M G, MIN Q, et al. Analysis of extreme ultraviolet spectral profiles of laser-produced Cr plasmas[J]. Chinese Physics, 2019, B28(7): 075201.
[35] BAKHIET M, SU M G, CAO Sh Q, et al. Analysis of ion radiation characteristics in the middle and late stages of laser-produced Cd plasma evolution in vacuum[J]. Journal of Quantitative Spectroscopy & Radiative, 2021, 263: 107535.
[36] BALKI O, RAHMAN M M, ELSAYED-ALI H E. Optical emission spectroscopy of carbon laser plasma ion source[J]. Optics Communications, 2018, 412: 134-140. DOI: 10.1016/j.optcom.2017.11.087
[37] BUTORIN P S, ZADIRANOV Y M, ZUEV S Y, et al. Absolutely calibrated spectrally resolved measurements of Xe laser plasma radiation intensity in the EUV range[J]. Technical Physics, 2018, 63(10): 1507-1510. DOI: 10.1134/S1063784218100080
[38] VINOGRADOV A V, SHLYAPTSEV V N. Amplification of ultraviolet radiation in a laser plasma[J]. American Institute of Physics, 1983, 13(11): 1511-1514.
[39] RADZIEMSKI L, CREMERS D A, BENELLI K, et al. Use of the vacuum ultraviolet spectral region for laser-induced breakdown spectroscopy-based Martian geology and exploration[J]. Spectrochimica Acta, 2005, B60(2): 237-248.
[40] LI X Y, LIN Zh X, LIU Y Y, et al. Spectroscopic study on the behaviors of the laser-induced air plasma[J]. Acta Optica Sinica, 2004, 24(8): 1051-1057(in Chinese).
[41] LIN Zh X, WU J Q, GONG Sh Sh. Spectroscopic study on the time-evolution behaviors of the laser-induced N2 plasma[J]. Optics & Optoelectronic Technology, 2005, 3(1): 22-26(in Chinese).
[42] LIU X L, SUN Sh H, CAO Y, et al. Experimental study on the behaviors of femtosecond-laser-induced low-pressure N2 plasma[J]. Acta Physica Sinica, 2013, 62(4): 045201(in Chinese). DOI: 10.7498/aps.62.045201
[43] ZHANG L W, LIN Ch, XIN L, et al. New remote sensing system: White-light LiDAR[J]. High Power Laser and Particle Beams, 2008, 20(10): 1603-1608(in Chinese).
[44] HAFEZ M A, KHEDR M A, ELAKSHER F F, et al. Characteristics of Cu plasma produced by a laser interaction with a solid target[J]. Plasma Sources Science and Technology, 2003, 12(3): 185-198.
[45] WANG L, ZHOU Y, GONG H, et al. Effect of sample temperature on radiation characteristics of laser-induced Cu plasma[J]. Journal of Atmospheric and Environmental Optics, 2020, 15(2): 110-116(in Chinese).
[46] FILHO C I S, OLIVEIRA A L, PEREIRA S C F, et al. Bright thermal (blackbody) emission of visible light from LnO2 (Ln=Pr, Tb), photoinduced by a NIR 980nm laser[J]. Dalton Transactions, 2019, 48(8): 2574-2581. DOI: 10.1039/C8DT04649B
[47] ABBAS Q A. Effect of target properties on the plasma characteristics that produced by laser at atmospheric pressure[J]. Iraqi Journal of Science, 2019, 60(6): 1251-1258.
[48] TRAUTNER S, JASIK J, PARIGGER C G, et al. Laser-induced optical breakdown spectroscopy of polymer materials based on evaluation of molecular emission bands[J]. Spectrochimica Acta, 2017, A 174: 331-338.
[49] HARILAL S S, SKRODZKI P J, MILOSHEVSKY A, et al. On- and off-axis spectral emission features from laser-produced gas breakdown plasmas[J]. Physics of Plasma, 2017, 24(6): 063304. DOI: 10.1063/1.4985678
[50] KAUTZ E J, YEAK J, BERNACKI B E, et al. The role of ambient gas confinement, plasma chemistry, and focusing conditions on emission features of femtosecond laser-produced plasmas[J]. Journal of Analytical Atomic Spectrometry, 2020, 35(8): 1574-1586. DOI: 10.1039/D0JA00111B
[51] RADZIEMSKI L J, CREMERS D A, BOSTIAN M, et al. Laser-induced breakdown spectra in the infrared region from 750 to 2000nm using a cooled InGaAs diode array detector[J]. Applied Spectroscopy, 2007, 61(11): 1141-1146. DOI: 10.1366/000370207782597166
[52] JELINKOVA H, DOROSHENKO M E, OSIKO V V, et al. Dysprosium thiogallate laser: Source of mid-infrared radiation at 2.4, 4.3, and 5.4μm[J]. Applied Physics, 2016, A122(8): 1-8.
[53] WANG X Sh, SONG X W, GAO X, et al. The effect of air pressure on the IR spectral emission from laser induced air plasma[J]. Optics Communications. 2020, 456: 124603. DOI: 10.1016/j.optcom.2019.124603
[54] WANG X Sh, MA Y M, GAO X, et al. Near infrared characteristics of air plasma induced by nanosecond laser[J]. Acta Physica Sinica, 2020, 69(2): 029502(in Chinese). DOI: 10.7498/aps.69.20190753
[55] WANG X Sh, YUAN L X, LI X, et al. The IR radiation characte-ristics of nanosecond pulsed laser induced air plasma[J]. Spectroscopy and Spectral Analysis, 2019, 39(9): 2698-2701(in Chinese).
[56] CIVIS S, FERUS M, KUBELIK P, et al. Potassium spectra in the 700-7000cm-1 domain: Transitions involving f-, g-, and h-states[J]. Astronomy & Astrophysics, 2012, 541(A125): 1-10.
[57] THOMSON M D, KRE M, LOFFLER T, et al. Broadband THz emission from gas plasmas induced by femtosecond optical pulses: From fundamentals to applications[J]. Laser & Photon, 2007, 1(4): 349-368.
[58] LIAO G Q, LI Y T. Review of intense terahertz radiation from relativistic laser-produced plasmas[J]. IEEE Transactions on Plasma Science, 2019, 47(6): 1-7. DOI: 10.1109/TPS.2019.2917356
[59] LI X H, ZHOU H B, ZOU D B. Study of ultra-intense laser driven solid line emitting terahertz wave[J]. Acta Optica Sinica, 2015, 35(3): 0314003(in Chinese). DOI: 10.3788/AOS201535.0314003
[60] PETROV G M, DAVIDSON A, ROCK B, et al. Broadband terahertz radiation from metal targets irradiated by a short pulse laser[J]. Physics Plasmas, 2020, 27(1): 013109. DOI: 10.1063/1.5128345
[61] WANG T Z, LEI H Y, SUN F Zh, et al. Experimental study of tera-hertz radiation driven by femtosecond ultraintense laser[J]. Acta Physica Sinica, 2021, 70(8): 085205(in Chinese). DOI: 10.7498/aps.70.20210518
[62] HERZER S, WOLDEGEORGIS A, POLZ J, et al. An investigation on THz yield at relativistic laser intensities from laser-produced solid density plasmas[J]. New Journal of Physics, 2018, 20: 063019. DOI: 10.1088/1367-2630/aaada0
[63] DAI J M, LIU J G, ZHANG X C. Terahertz wave air photonics: Terahertz wave generation and detection with laser-induced gas plasma[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(1): 183-190. DOI: 10.1109/JSTQE.2010.2047007
[64] SHKURINOV A L P, SINKO A S, SOLYANKIN P M, et al. Impact of the dipole contribution on the terahertz emission of air-based plasma induced by tightly focused femtosecond laser pulses[J]. Physical Review, 2017, E95(4): 043209.
[65] WANG T J, MARCEAU C, YUAN S, et al. External focusing effect on terahertz emission from a two-color femtosecond laser-induced filament in air[J]. Laser Physical Letters, 2011, 8(1): 57-61. DOI: 10.1002/lapl.201010088
[66] LI N, BAI Y, LIU P. Frequency control of the broadband ultrashort terahertz source generated from the laser induced plasma by two-color pluses[J]. Acta Physica Sinica, 2016, 65(11): 110701(in Chinese). DOI: 10.7498/aps.65.110701
[67] ANDREEVA V A, KOSAREVA O G, PANOV N A, et al. Ultrabroad terahertz spectrum generation from an air-based filament plasma[J]. Physical Review Letters, 2016, 116(6): 063902. DOI: 10.1103/PhysRevLett.116.063902
[68] THIELE I, MARTINEZ P G D A, NUTER R, et al. Broadband terahertz emission from two-color femtosecond-laser-induced microplasmas[J]. Physical Review, 2017, A96(5): 053814.
[69] YOU Y S, OH T I, KIM K Y. Off-axis phase-matched terahertz emission from two-color laser-induced plasma filaments[J]. Physical Review Letters, 2012, 109(18): 183902. DOI: 10.1103/PhysRevLett.109.183902
[70] LUBENKO D M, PROKOPEV V E, ALEKSEEV S V, et al. Control of THz radiation divergence in laser filaments[J]. Atmospheric and Oceanic Optics, 2019, 32(4): 430-433. DOI: 10.1134/S1024856019040079
[71] USHAKOV A, CHIZHOV P, BUKIN V, et al. Multiple filamentation effects on THz radiation pattern from laser plasma in air[J]. Photonics, 2021, 8(4): 1-8.
[72] BAKHTIARI F, GOLMOHAMMADY S, YOUSEFI M, et al. Terahertz radiation generation and shape control by interaction of array Gaussian laser beams with plasma[J]. Physics of Plasmas, 2016, 23(12): 123105. DOI: 10.1063/1.4968836
[73] VAICAITIS V, BALACHNINAITE O, MORGNER U, et al. Terahertz radiation generation by three-color laser pulses in air filament[J]. Journal Applied Physics, 2019, 125(17): 173103. DOI: 10.1063/1.5078683
[74] DORRANIAN D, GHORANNEVISS M, STARODUBTSEV M, et al. Microwave emission from TW-100 fs laser irradiation of gas jet[J]. Laser and Particle Beams, 2005, 23(4): 583-596. DOI: 10.1017/S0263034605060052
[75] NAKAJIMA H, SHIMADA Y, SOMEKAWA T, et al. Nondestructive sensor using microwaves from laser plasma by subnanosecond laser pulses[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(4): 718-722. DOI: 10.1109/LGRS.2009.2024176
[76] MIRAGLIOTTA J A, BRAWLEY B, SAILOR C, et al. Detection of microwave emission from solid targets ablated with an ultrashort pulsed laser[J]. Proceedings of the SPIE, 2011, 8037: 1-8.
[77] ZVORYKIN V D, LONIN A A, LEVCHENKO A O, et al. Directed transfer of microwave radiation in slidingmode plasma waveguides produced by ultraviolet laser in atmospheric air[J]. Applied Optics, 2014, 53(31): 131-140.
[78] STEPHAN K D, GARZA A E D L, HUA Y. Dispersion and attenuation characteristics of steady-state microwave plasma waveguide[J]. AIP Advances, 2020, 10(4): 045036. DOI: 10.1063/1.5124737
[79] CHEN Z Y, LI J F, LI J, et al. Microwave radiation mechanism in a pulse-laser-irradiated Cu foil target revisited[J]. Physica Scripta, 2011, 83(5): 055503. DOI: 10.1088/0031-8949/83/05/055503
[80] JIANG W M, LI Y T, ZHANG Zh, et al. Effect of laser intensity on microwave radiation generated in nanosecond laser-plasma interactions[J]. Acta Physica Sinica, 2019, 68(12): 125201(in Chinese). DOI: 10.7498/aps.68.20190501
[81] KULYGIN M, DENISOV G. Nanosecond laser-driven semiconductor switch for 70GHz microwave radiation[J]. Journal of Infrared Millimeter & Terahertz Waves, 2012, 33: 638-648.
-
期刊类型引用(0)
其他类型引用(3)