高级检索

五轴联动与激光近净成形的混合制造技术研究

杨波, 袁义邦, 杨建明

杨波, 袁义邦, 杨建明. 五轴联动与激光近净成形的混合制造技术研究[J]. 激光技术, 2022, 46(3): 415-421. DOI: 10.7510/jgjs.issn.1001-3806.2022.03.019
引用本文: 杨波, 袁义邦, 杨建明. 五轴联动与激光近净成形的混合制造技术研究[J]. 激光技术, 2022, 46(3): 415-421. DOI: 10.7510/jgjs.issn.1001-3806.2022.03.019
YANG Bo, YUAN Yibang, YANG Jianming. Hybrid manufacturing study based on five-axis linkage and LENS[J]. LASER TECHNOLOGY, 2022, 46(3): 415-421. DOI: 10.7510/jgjs.issn.1001-3806.2022.03.019
Citation: YANG Bo, YUAN Yibang, YANG Jianming. Hybrid manufacturing study based on five-axis linkage and LENS[J]. LASER TECHNOLOGY, 2022, 46(3): 415-421. DOI: 10.7510/jgjs.issn.1001-3806.2022.03.019

五轴联动与激光近净成形的混合制造技术研究

详细信息
    作者简介:

    杨波(1989-), 男, 硕士, 工程师, 主要研究方向为激光增材制造。E-mail: 1157565735@qq.com

  • 中图分类号: TN249

Hybrid manufacturing study based on five-axis linkage and LENS

  • 摘要: 为了弥补加工制造技术上的局限性, 在五轴联动计算机数控加工中心的基础上, 采用增减材混合制造的技术方法集成激光近净成形制造装置, 在结构上形成激光增减材混合制造装置; 并基于UG后处理构造器开发增减材混合制造的后处理系统, 在功能上实现对零件的增减材混合制造。结果表明, 可实现复杂金属零件的一次成形, 减少因多次装夹引起的加工误差和低效; 相较于单一的增材、减材加工模式, 产品成品率提高20%以上, 加工时间缩短45%以上, 支撑减少30%以上, 尤其对于有封闭内流道的零件, 其内流道表面精度达到0.6μm, 有效延长零件的服役寿命, 实现了零件弱支撑、无支撑、无干涉、高精度和高效率的加工。该研究可为激光增减材混合制造的工艺方案、制造模式、应用拓展提供参考。
    Abstract: In order to make up for the limitations of manufacturing technology, laser engineered near shaping (LENS) device was integrated on a five-axis linkage computerized numerical control (CNC) machine by applying the technology of adding and subtracting materials, which forms an equipment realizing additive and subtractive machining structurally; UG post-processing builder was used to develop a post-processing machining system of additive and subtractive materials, which realizes parts' hybrid manufacturing functionally. The results show that hybrid manufacturing can achieve one-time forming for complex metal parts, and reduce machining errors and inefficiencies caused by multiple clamping. Compared with additive or subtractive processing mode, the product yield rate is increased more than 20%, processing time is shortened more than 45%, supporting amount is reduced more than 30%, respectively. Especially for parts with a structure of closed internal flow channel, the surface accuracy of the internal flow channel can reach 0.6μm by using hybrid manufacturing method, which effectively extends parts' service life. Hybrid manufacturing technology can realize processing with weak support, no support, no interference, high-precision and high-efficiency. This research provides reference for the process plan, manufacturing mode, and application expansion of laser hybrid manufacturing.
  • Figure  1.   Basic set-up

    a—rotating stage b—LENS module

    Figure  2.   Flow of post-process

    Figure  3.   Trophy model and physical sample

    Figure  4.   Simulation processing track of the trophy

    Figure  5.   Blade model and physical sample

    Figure  6.   Simulation processing track of blade

    Figure  7.   Dimensional error graph

    Figure  8.   Schematic diagram of receiver part model and ring track

    Figure  9.   Receiver processed by hybrid manufacture

    a—additive manufacturing the ring on the substrate surface b—subtractive manufacturing the ring on the substrate surface c—additive manufacturing the ring to a specified height d—array of increased and decreased materials manufacturing ring e—receiver sample

    Figure  10.   Closed impeller

    a—3-D model b—cross-sectional view c—3-D model with upper and lower cover removed

    Figure  11.   Additive manufacturing closed impeller by SLM

    Figure  12.   Closed impeller processing flow

    Figure  13.   Scanning, modeling, repairing, etc. flowchart

    Figure  14.   Blade additive-subtractive material repairing process

    Table  1   Post-process code description

    symbol function
    G00 motion rapid
    G01 motion linear
    G04 delay (0.1s~9999.9s)
    G17 plane xy
    G41 tool offset right
    G43 tool length adjust plus
    M03 spindle clockwise rotation
    M05 spindle off
    V the 4th axis, plane of rotation yz, -110°~ 110°
    U the 5th axis, plane of rotation xy, -360°~ 360°
    下载: 导出CSV

    Table  2   Procedure of trophy processing

    process tool specification driving method feed rate/(mm·min-1) spindle speed/(r·min-1)
    cavity milling cutter D=10mm automation 500 3000
    cavity milling cutter D=10mm automation 500 3000
    contour area milling ball cutter R=5mm area milling 600 3500
    contour area milling ball cutter R=5mm boundary 500 3500
    contour area milling ball cutter R=5mm boundary 500 3500
    variable contour milling ball cutter R=2mm curved surface 1500 4500
    variable contour milling ball cutter R=5mm curved surface 1200 3500
    variable contour milling ball cutter R=5mm curved surface 1200 3500
    variable contour milling ball cutter R=2mm curved surface 1500 4500
    下载: 导出CSV

    Table  3   Blade processing process

    process tool specification driving method spindle speed/(r·min-1) feed speed/(mm·min-1)
    cavity milling customized follow around 2600 400
    cavity milling customized follow around 2600 400
    cavity milling cutter D=14mm follow around 3200 350
    cavity milling cutter D=4mm follow around 4200 400
    contour area milling ball cutter R=2mm aera milling 4200 600
    variable contour milling ball cutter R=2mm curved surface 4200 1200
    cavity milling cutter D=4mm follow around 4200 300
    下载: 导出CSV

    Table  4   Laser additive manufacturing code description

    symbol function
    S1 laser power, setting range 50W~950W
    S2 powder feeder, set value range 280g/min~900g/min
    M83 1# powder feeder on
    M84 2# powder feeder on
    M85 powder feeder off
    M86 laser head goes down to the bottom
    M87 laser head goes up to the top
    M88 laser on
    M89 laser off
    下载: 导出CSV

    Table  5   Additive paraments of hybrid manufacture

    tool specification power/
    W
    road width/
    mm
    thickness/
    mm
    procetive
    gas
    coaxial nozzle 800 or 600 0.7~1.2 1~1.5 N2
    下载: 导出CSV

    Table  6   Additive paraments of hybrid manufacture

    tool specification cutter D=6mm or ball cutter D=6mm
    process variable counter milling
    driving method curved surface
    cutting thickness 0.05mm
    rotation speed 3000r/min
    feed rate 500mm/min
    下载: 导出CSV
  • [1]

    ZONG X W, XIONG C, ZHANG B, et al. Summary of research on manufacturing complex metal parts based on rapid prototyping techno-logy[J]. Hot Working Technology, 2019, 48(1): 5-8 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-SJGY201901002.htm

    [2]

    XU X P, LI M L, LIU Y Y, et al. Crack analysis of laser engineered net shaping GH99 alloy[J]. Transactions of Materials and Heat Treatment, 2019, 40(2): 1-5 (in Chinese). https://www.researchgate.net/publication/333558205_Crack_analysis_of_laser_engineered_net_shaping_GH99_alloy

    [3]

    MIAO P. Effect of deposition efficiency on microstructure and property of 316L stainless steel fabricated by laser engineered net shaping[D]. Dalian: Dalian University of Technology, 2018: 7-21 (in Chinese).

    [4]

    LI H B. Research on five-axis linkage dual NURBS interpolation technology[D]. Nanchang: Nanchang Hangkong University, 2019: 8-13(in Chinese).

    [5]

    ZHANG Ch Y, CHEN X Sh, SUN X T. The development situation of metal 3-D printing manufacturing technology[J]. Laser Technology, 2020, 44(3): 393-396(in Chinese).

    [6]

    HE L. The study on semi-solid metal extrusion deposition molding technology based on five-axis linkage CNC workbench[D]. Wuhan: Huazhong University of Science and Technology, 2015: 11-27 (in Chinese).

    [7]

    CAO Ch Ch, GUO P Y, YANG D K. Mechanical structure design of teaching five-axis CNC milling machine based on UG[J]. Agricultu-ral Mechanization Using & Maintenance, 2019, 7: 6-7 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-NJWX201907003.htm

    [8]

    DING H Y, HE J Ch. Research progress in additive manufacturing of high entropy alloys[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2020, 34(6): 36-39 (in Chinese). https://oversea.cnki.net/kcms/detail/detail.aspx?filename=HDCB202006007&dbcode=CJFD&dbname=CJFD2020&v=

    [9]

    ZHAO X K. Research progress of additive manufacturing technology on nickel-titanium memory alloy and its application prospects in aviation[J]. Aeronautical Manufacturing Technology, 2016, 12: 34-40 (in Chinese).

    [10]

    ZHONG M L, NING G Q, LIU W J. Research and development on laser direct manufacturing metallic components[J]. Laser Technology, 2002, 26(5): 388-391(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS200205021.htm

    [11]

    DOÑATE-BUENDÍA C, GU D D, SCHMIDT M, et al. On the selection and design of powder materials for laser additive manufacturing[J]. Materials & Design, 2021, 204: 109653. https://spider.doc88.com/p-38273066446175.html

    [12]

    GAO M Q, ZHAO Y H, ZHAO J B, et al. Research status and development of additive/subtractive hybrid manufacturing (A/SHM) [J]. Vacuum, 2019, 56(6): 68-71(in Chinese).

    [13]

    HUANG X, ZHANG J Ch, LIAN G F, et al. Research status and application of extreme high speed cladding[J]. Machine Tool & Hydraulics, 2021, 49(6): 151-155(in Chinese). https://oversea.cnki.net/kcms/detail/detail.aspx?filename=JCYY202106035&dbcode=CJFD&dbname=CJFD2021&v=

    [14]

    SHI Y, WANG L F, SHI Q, et al. The electrical control systems of high-performance selective laser melting additive manufacturing equipment[J]. Manufacturing Automation, 2019, 43(3): 21-22(in Chinese).

    [15]

    GUO Ch H, WANG Z Ch, YAN J Y, et al. Research progress in additive-subtractive hybrid manufacturing[J]. Chinese Journal of Engineering, 2020, 42(5): 540-548(in Chinese).

    [16]

    LI A, LIU X F, YU B, et al. Key factors and developmental directions with regard to metal additive manufacturing[J]. Chinese Journal of Engineering, 2019, 41(2): 159-173(in Chinese). https://www.researchgate.net/publication/333043071_Key_factors_and_developmental_directions_with_regard_to_metal_additive_manufacturing

    [17]

    YAO R B, YANG L X, DAI L L. Study on hybrid process planning of additive and subtractive manufacturing[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(7): 1076-1081(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JXKX201807015.htm

    [18]

    BROWN D, LI C, LIU Z Y, et al. Surface integrity of Inconel718 by hybrid selective laser melting and milling[J]. Virtual and Physical Prototyping, 2018, 13(1): 27-30. DOI: 10.1080/17452759.2017.1392681

    [19]

    SAMES W J, LIST F A, PANNALA S, et al. The metallurgy and processing science of metal additive manufacturing[J]. International Materials Reviews, 2016, 61(5): 315-316. DOI: 10.1080/09506608.2015.1116649

    [20]

    SING S L, AN J, YEONG W Y, et al. Laser and electron-beam powder bed additive manufacturing of metallic implants: A review on processes, materials and designs[J]. Journal of Orthopaedic Research, 2016, 34(3): 369-370. DOI: 10.1002/jor.23075

    [21]

    ZHANG J T, ZHANG W, LI Y J, et al. Laser deposition additive-subtractive hybrid manufacturing process for stainless steel powder based on DMG MORI LASERTEC 653D[J]. Materials Science and Engineering Powder Metallurgy, 2018, 23(4): 368-369(in Chinese).

图(14)  /  表(6)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  1
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-08
  • 修回日期:  2021-07-21
  • 发布日期:  2022-05-24

目录

    /

    返回文章
    返回