Super-resolution light needle achieved by tightly focusing azimuthally polarized airy beam
-
摘要: 为了研究角向偏振艾里光束的紧聚焦特性,采用理查德-沃夫矢量衍射理论分析优化了艾里光束的指数衰减因子、主环半径与比例因子对其入射光场分布的影响;分别研究了角向偏振艾里光束聚焦场分布与涡旋滤波器调制的角向偏振艾里光束的聚焦场分布,得到亚波长的角向中空场分布与亮场分布,实验结果与理论模拟基本一致。进一步利用粒子群算法设计多环涡旋相位滤波器调制角向偏振艾里光束,紧聚焦后得到了超长无衍射超分辨的横向偏振光针。结果表明,光针的半峰全宽为0.395λ,聚焦深度为37.432λ,纵横比达到94.788;通过计算斯托克斯参量分析聚焦光场的偏振分布,发现聚焦光场在径向偏振与角向偏振之间交替变化,且光束中心奇异点消失,实现了横向偏振的亮场分布。该研究在高密度的磁光存储、超分辨的光学成像、纳米光刻与粒子操作等领域具有广泛的应用。Abstract: To study the tight focusing characteristics of azimuthally polarized Airy beams, the Richards-Wolf vector diffraction theory was adopt. The influences of the exponential attenuation factor, the radius of the main ring, and the proportional factor of the airy beams on the incident field patterns were respectively studied. The focal field distributions of the azimuthally polarized airy beams and the azimuthally polarized airy beams modulated by a vortex phase filter were studied, from which a sub-wavelength azimuthally polarized doughnut field and a transversally polarized bright field were garnered. The experimental results are basically consistent with the theoretical simulations. Furthermore, the multi-ring vortex phase filter was designed to modulate the azimuthally polarized airy beams according to the particle swarm algorithm, and an ultra-long and non-diffracting super-resolution transversally polarized light needle was produced on tight focusing. It turns out that the full width at half maximum and the depth of focus of the light needle are 0.395λ and 37.432λ respectively, which corresponds to an aspect ratio of 94.788. The polarization patterns of the focal fields are analyzed by calculating the Stokes polarization parameters. It is found that the focal field alternates between the radial polarization and azimuthal polarization and the singularity at the center of the beam disappears, which testify that the transversally polarized bright field distribution is realized. The research holds broad applications in high-density magneto-optical storage, super-resolution optical imaging, nanolithography and particle manipulation.
-
-
Figure 3. a~c—the normalized intensity patterns of input Airy beams for given input parameters r0=2.8mm, w=0.03mm and a0=0.01, 0.1 and 1, respectively in the x-y plane d~f—the normalized intensity patterns of input airy beams for given input parameters a0=0.25, w=0.03mm and r0=2mm, 2.5mm and 3mm, respectively in the x-y plane g~i—the normalized intensity patterns of input Airy beams for given input parameters a0=0.25, r0=2.8mm and w=0.05mm, 0.1mm and 0.5mm, respectively in the x-y plane
Figure 4. a~c—the normalized intensity profiles, normalized intensity patterns in the x-y planes and experimental results of unmodulated azimuthally polarized beam by tightly focusing, respectively d~f—the normalized intensity profiles, normalized intensity patterns in the x-y planes and experimental results of modulated azimuthally polarized beam by tightly focusing, respectively
Table 1 The essential parameters of the multi-loop vortex phase filter and properties of airy light needle
N=1 N=4 N=5 rt 1 0.9667, 0.9754,
0.9936, 10.9555, 0.9711,
0.9867, 0.9990, 1f(θ) 1 1, 0, 1, 1 1, 1, 1, 0, 1 φ(θ) π/2 π/2, -π/2,
π/2, -π/2π/2, -π/2,
π/2, -π/2, π/2DOF/λ 10.238 37.743 37.432 FWHM/λ 0.395 0.398 0.395 DOF/FWHM 25.918 94.760 94.788 -
[1] NIE Zh Q, LIN H, LIU X F, et al. Three-dimensional super-resolution longitudinal magnetization spot arrays[J]. Light: Science & A-pplications, 2017, 6(8): e17032. http://www.nature.com/articles/lsa201732
[2] NIE Zh Q, SHI G, ZHANG X R, et al. Generation of super-resolution longitudinally polarized beam with ultra-long depth of focus using radially polarized hollow Gaussian beam[J]. Optics Communications, 2014, 331(22): 87-93.
[3] ZHAO Y C, NIE Zh Q, ZHAI A P, et al. Optical super-resolution effect induced by nonlinear characteristics of graphene oxide films[J]. Optoelectronics Letters, 2018, 14(1): 21-24. DOI: 10.1007/s11801-018-7163-5
[4] WANG H F, SHI L P, LUKYANCHUK B, et al. Creation of a needle of longitudinally polarized light in vacuum using binary optics[J]. Nature Photonics, 2008, 2(8): 501-505. DOI: 10.1038/nphoton.2008.127
[5] SHI C K, NIE Zh Q, TIAN Y T, et al. Super-resolution longitudinally polarized light needle achieved by tightly focusing radially polarized beams[J]. Optoelectronics Letters, 2018, 14(1): 1-5. DOI: 10.1007/s11801-018-7162-6
[6] WANG H Ch, HU A J, CHEN P F. Generation of Laguerre-Gaussian beam based on spatial light modulator[J]. Laser Technology, 2017, 41(3): 447-450 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201703028.htm
[7] ZHANG Y J, GAO Sh H, S Y, et al. Preparation and characteristics of large aperture liquid crystal q-wave-plates[J]. Laser Technology, 2019, 43(4): 6-11(in Chinese). http://www.zhangqiaokeyan.com/academic-journal-cn_laser-technology_thesis/0201270971193.html
[8] NIE Zh Q, LI Z G, SHI G, et al. Generation of a sub-wavelength focal spot with a long transversally polarized optical needle using a double-ring-shaped azimuthally polarized beam[J]. Optics and Lasers in Engineering, 2014, 59(12): 93-97. http://www.sciencedirect.com/science/article/pii/S0143816614000797
[9] GUAN J, LIN J, CHEN C, et al. Transversely polarized sub-diffraction optical needle with ultra-long depth of focus[J]. Optics Communications, 2017, 404(9): 118-123. http://www.sciencedirect.com/science/article/pii/S0030401817302626
[10] LI G, LU F, ZHU B, et al. Effect of wavefront aberrations on focusing characteristics of ultrashort femtosecond laser pulses[J]. Laser Technology, 2020, 44(1): 14-19 (in Chinese).
[11] ZHAO J H, WANG Q, ZHU M B, et al. Compact focusing properties of radial vector beam with vortex phase encoding[J]. Laser Technology, 2017, 41(2): 187-190 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS201702008.htm
[12] LIU S, WANG M R, LI P, et al. Abrupt polarization transition of vector autofocusing Airy beams[J]. Optics Letters, 2013, 38(14): 2416-2418. DOI: 10.1364/OL.38.002416
[13] ZHU W G, SHE W L. Tightly focusing vector circular Airy beam through a hard aperture[J]. Optics Communications, 2015, 334(28): 303-307. http://www.sciencedirect.com/science/article/pii/S0030401814008062
[14] WANG F, ZHAO C B L, DONG Y, et al. Generation and tight-focusing properties of cylindrical vector circular Airy beams[J]. A-pplied Physics, 2014, B117(3): 905-913. DOI: 10.1007/s00340-014-5908-9
[15] JIN L, ZHANG X Q. Characteristics of Airy beam propagating in circular periodic media[J]. Laser Technology, 2019, 43(3): 432-436 (in Chinese). http://www.zhangqiaokeyan.com/academic-journal-cn_laser-technology_thesis/0201270971183.html
[16] LI Y, MO W Ch, YANG Zh G. Generation of terahertz vortex beams base on metasurface antenna arrays[J]. Laser Technology, 2017, 41(5): 644-648 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS201705005.htm
[17] ZHAN Q W. Properties of circularly polarized vortex beams[J]. Optics Letters, 2006, 31(7): 867-869. DOI: 10.1364/OL.31.000867
[18] ZHANG Y Zh, WANG J M, LU Y G, et al. Application of the manipulated vectorial laser filed in surface treatment[J]. Laser Technology, 2020, 44(1): 32-36 (in Chinese).
[19] GUAN J, LIN J, MA Y, et al. A subwavelength spot and a three-dimensional optical trap formed by a single planar element with azimuthal light[J]. Science Letters, 2017, 7(1): 1-8. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5547119/
[20] MAN Z S, MIN C J, DU L P, et al. Sub-wavelength sized transversely polarized optical needle with exceptionally suppressed side-lobes[J]. Optics Express, 2016, 24(2): 874-882. DOI: 10.1364/OE.24.000874
[21] ZENG L W, CAI Y J, TAN C S, et al. Optimization of Stokes optical polarization measurement system[J]. Laser Technology, 2017, 41(1): 74-78(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS201701016.htm
-
期刊类型引用(3)
1. 严博, 苏金善. 激光遥感探测装置固有特性的观测与分析. 伊犁师范学院学报(自然科学版). 2020(01): 58-62 . 百度学术
2. 赵洪博, 张达, 杨健坤, 孟繁萃, 张明. 小波分层法在激光多普勒测速信号中的应用. 激光技术. 2019(01): 103-108 . 本站查看
3. 宋莹, 赵旭龙, 姜岩秀, 巴音贺希格, 齐向东. 移栅型全息光栅曝光干涉条纹锁定. 中国激光. 2017(05): 233-240 . 百度学术
其他类型引用(1)