Fiber optical sensor demodulation research based on asymmetric 3×3 coupler
-
摘要: 为了解决3×3耦合器相位解调中,输出的3路信号分光比不均匀和相位差不能严格满足120°的非对称问题,采用了一种新型的3×3耦合器解调方案,并进行了理论分析和实验验证。利用均值算法对输出的任意两路信号分别进行预处理,压缩原始3路输出信号之间的功率与相位的偏差,使经过矫正后新的3路信号近似为对称状态输出。根据仿真与实验的结果,分析了耦合器输出的对称性条件和新型解调方案的抗噪声能力。结果表明,该新型解调方案可以有效矫正3×3耦合器3路输出信号的非对称性,新方案的噪声水平约为10-4mW,信噪比约为50dB, 与传统的解调方案相比,可以得到准确度与信噪比更高的待测信号。这一结果对光纤相位解调领域有很好的指导作用,加速了光纤传感技术的实用化进程。Abstract: In the fiber optical sensor demodulation based on asymmetric 3×3 coupler, the fiber-optic median phase shift 3×3 adder due to the limitation of the manufacturing process and the susceptibility to external environmental interference, and then the three-way signal output has an uneven splitting ratio and an asymmetric phenomenon that the phase difference cannot meet 120°, which causes a problem that could not be accurately corrected. In order to solve these problems, a new 3×3 replacer was used, and theoretical analysis and experimental verification were performed. The mean two algorithms were used to pre-process any two signals output, and compressed the original three signals. The power and phase difference between the output signals of the two channels make the new three-channel signals after correction to be approximately symmetrical output, and then perform a symmetric algorithm operation. Simulation and experimental results show that the new scheme can effectively correct the asymmetry of the three output signals of the positive 3×3 converter, and classify it. Noise level of the new scheme is about 10-4mW and signal-to-noise ratio is about 50dB. Compared with the traditional alternative scheme, the new structure can obtain higher accuracy and signal-to-noise ratio of the signal under test. In addition, according to the simulation and experimental results, the symmetry conditions of the output of the replacer and the anti-noise capability of the new superposition scheme are analyzed. The result has a good guiding role in the field of optical fiber polarizers and accelerates the practical process of optical fiber sensing technology.
-
Keywords:
- optoelectronics /
- phase demodulation /
- mean algorithm /
- 3×3 coupler
-
-
-
[1] LU Y, ZHU T, CHENG L, et al. Distributed vibration sensor based on coherent detection of phase-OTDR[J]. Journal of Lightwave Technology, 2010, 28(22): 3243-3249. http://www.opticsinfobase.org/JLT/abstract.cfm?uri=JLT-28-22-3243
[2] PENG F, DUAN N, RAO Y, et al. Real-time position and speed monitoring of trains using phase-sensitive OTDR[J]. IEEE Photonics Technology Letters, 2014, 26(20): 2055-2057. DOI: 10.1109/LPT.2014.2346760
[3] ZHANG B, ZHANG E T, HU X Ch, et al. Amplification charactcristics of multiwavelength crbium-doped fiber laser amplifiers[J]. Laser Technology, 2018, 42(3): 325-330(in Chinese). http://www.zhangqiaokeyan.com/academic-journal-cn_laser-technology_thesis/0201236224191.html
[4] BAO X, ZHOU D P, BAKER C, et al. Recent development in the distributed fiber optic vibration and ultrasonic detection[J]. Journal of Lightwave Technology, 2016, 35(16): 3256-3267. http://ieeexplore.ieee.org/document/7572132
[5] LIU Sh, HAN X Y, XIONG Y Ch. Distributed vibration detection system based on weak fiber grating array[J]. Chinese Journal of Lasers, 2017, 44(2): 0210001(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JJZZ201702035.htm
[6] YING C. Quantitative detection of phase-demodulation techniques for phase-sensitive optical time domain reflectometry[D]. Hangzhou: Zhejiang University, 2018: 13-23(in Chinese).
[7] ZHANG X, SUN Z, SHAN Y, et al. A high performance distributed optical fiber sensor based on φ-OTDR for dynamic strain measurement[J]. IEEE Photonics Journal, 2017, 9(3): 1-12. http://ieeexplore.ieee.org/document/7917232
[8] XU N, DAI M. Distributed optical fiber temperature and pressure sensor design[J]. Chinese Optics, 2015, 8(4): 629-635(in Chinese).
[9] LIU L. Research on light reflector based on helium pulse[D]. Shanghai: Shanghai Jiao Tong University, 2015: 17-47(in Chinese).
[10] WU G X, DUAN F J. Avalanche photodiode electric heterodyne mixing technology and its parameter optimization[J]. Laser Technology, 2015, 39(6):803-804(in Chinese). http://www.opticsjournal.net/abstract.htm?id=OJ151130000300VsYu25
[11] QIAO J P, DENG L W, HE J, et al. Optimization of fast image encryption algorithm based on chaotic mapping[J]. Laser Technology, 2017, 41(6): 897-903(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201706026.htm
[12] XU G, HE Ch Ch, ZHANG L N, et al. Research of position technology of Mach-Zehnder interferometer[J]. Laser Technology, 2019, 43(2): 195-200(in Chinese).
[13] SU B L. Investigation on quasi-lossless transmission system based on pumping Raman amplification[J]. Laser Technology, 2017, 41(2): 265-269(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201702024.htm
[14] QIAN X L, KONG Y, DU T Y, et al. Study on full-sensitivity to vibration of phase sensitive optical time-domain reflectometers[J].Laser Technology, 2019, 43(5): 608-613(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201905004.htm
[15] CHEN K, ZHENG J Y, ZHOU J H, et al. Design of real-time fast polarization control algorithm[J]. Laser Technology, 2017, 41(5): 738-742(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201705024.htm
[16] KOYAMADA Y, IMAHAMA M, KUBOTA K, et al. Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR[J]. Journal of Lightwave Technology, 2009, 27(9): 1142-1146. http://www.osapublishing.org/jlt/abstract.cfm?uri=jlt-27-9-1142
[17] LV Y L, XING Y W. Study on rayleigh scattering waveform characteristics of phase light time domain reflectometer[J]. Acta Optica Sinica, 2011, 31(8): 0819001(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXXB201108042.htm
[18] HUANG Zh H, WANG Y L, LI G F, et al. Adaptive frequency-domain equalization for few-mode fiber transmission systems[J]. Laser Technology, 2017, 41(1): 124-128(in Chinese). http://www.jgjs.net.cn/EN/Y2017/V41/I1/124
[19] GAO H, LIU J M, YANG Ch, et al. Compact solid-state lasers with high peak power used for remote laser rangefinders[J]. Laser Technology, 2019, 43(5): 597-600(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201905002.htm
[20] XU S H, XIAO Sh L. Research on reverse modulation optical communication system based on acousto-optic modulation[J]. Laser Technology, 2015, 39(5): 599-600(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201505004.htm