Experimental study on water droplet plasma induced by pulse Nd:YAG laser
-
摘要: 为了研究激光诱导液滴等离子体特性,基于脉冲激光与液滴的同步作用,采用直接成像法和阴影法研究了液滴等离子体羽辉膨胀特性及激光作用液滴的运动情况。首先采用增强型电荷耦合器件直接成像法,研究了水滴等离子体的羽辉随时间的演化;其次利用阴影法研究激光作用水滴的阴影图像的演化,观察到激光作用水滴产生的冲击波及液滴团簇的变化,分析计算了冲击波膨胀距离随时间的变化和膨胀速度。结果表明,激光诱导水滴等离子体的膨胀形状近似为椭圆,其中沿激光入射方向的一侧辐射强度较高;100ns内等离子体的膨胀变化近似为线性膨胀,100ns后膨胀趋于稳定;冲击波膨胀半径随时间线性增长,冲击波的膨胀速率约为90m/s。此研究结果可为激光诱导液滴实验提供一定的参考依据。Abstract: In order to study the characteristics of laser-induced droplet plasma, based on the synchronous system of pulsed laser and droplet, the direct imaging method and the shadow method were used to study the expansion characteristics of droplet plasma and the motion of droplets. Firstly, the evolution of the plume of water droplet plasma over time was studied by using the intensified charge-coupled device (ICCD) direct imaging method. Then, the shadow image evolution of laser water droplets was studied by shadow method. The changes of the shock wave and the droplet clusters generated by the laser droplets were observed, the expansion speed and the expansion distance of the shock wave with time were calculated and analyzed. The results show that the plasma expansion shape of droplets induced by laser is approximately elliptical, with one side along the incident direction of the laser having a higher radiation intensity. The expansion of the plasma within 100ns is approximately linear expansion, and the expansion tends to be stable after 100ns. In addition, the shock wave expansion radius increases linearly with time and the shock wave expands at a rate of approximately 90m/s. These findings can provide a reference for laser-induced droplet experiments.
-
Keywords:
- laser technique /
- droplet plasma plume /
- shadow method /
- droplet target
-
-
-
[1] BELL C E, LANDT J A. Laser-induced high-pressure shock waves in water[J]. Applied Physics Letters, 1967, 10(2): 46-48. DOI: 10.1063/1.1754840
[2] BAGHDASSARIAN O, TABBERT B, WILLIAMS G A. Luminescence characteristics of laser-induced bubbles in water[J]. Physical Review Letters, 1999, 83(12): 2437-2440. DOI: 10.1103/PhysRevLett.83.2437
[3] BERGLUND M, RYMELL L, HERTZ H M, et al. Cryogenic liquid-jet target for debris-free laser-plasma soft X-ray generation[J]. Review of Scientific Instruments, 1998, 69(6): 2361-2364. DOI: 10.1063/1.1148944
[4] YAROSHCHYK P, MORRISON R J S, BODY D, et al. Quantitative determination of wear metals in engine oils using laser-induced breakdown spectroscopy: A comparison between liquid jets and static liquids[J]. Spectrochimica Acta, 2005, B60(7/8): 986-992. DOI: 10.1016/j.sab.2005.03.011
[5] JIN F, RICHARDSON M C, SHIMKAVEG G M, et al. Characterization of a laser plasma water droplet EUV source[C]//International Society for Optics and Photonics, Applications of Laser Plasma Radiation Ⅱ. San Diego, CA, USA: International Society for Optics and Photonics, 1995: 81-87.
[6] NI Q L, CHEN B.Spectral of laser plasma source of CO2, O2, CF4 liquid droplet ejectiontarget[J].Spectroscopy and Spectral Analysis, 2008, 28(11):2465-2468(in Chinese). http://europepmc.org/abstract/MED/19271467
[7] SON J, CHO M, KIM D, et al. Prepulse effect on laser-induced water-window radiation from a liquid nitrogen jet[J]. Applied Physics Letters, 2007, 90(26):261502. DOI: 10.1063/1.2751581
[8] RAI N K, RAI A K. LIBS—an efficient approach for the determination of Cr in industrial wastewater[J]. Journal of Hazardous Materials, 2008, 150(3): 835-838. DOI: 10.1016/j.jhazmat.2007.10.044
[9] SAMU T J, SAARI S, KESKINEN J, et al. Detection of Ni, Pb and Zn in water using electrodynamic single-particle levitation and laser-induced breakdown spectroscopy[J]. Spectrochimica Acta, 2014, B99: 9-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e554f4377df11ef081e3e818f1fdd518
[10] WANG L, XU L, XU W Q, et al.Single and double pulse LIBS study of Al element in liquid phase jet [J]. Spectroscopy and Spectral Analysis, 2018, 38(1):314-319. DOI: 10.1039/C2EE02865D
[11] NAMBA S, FUJIOKA S, NISHIMURA H, et al. Spectroscopic study of debris mitigation with minimum-mass Sn laser plasma for exteme ultraviolet lithography[J].Applied Physics Letters, 2006, 88(17): 171503. DOI: 10.1063/1.2199494
[12] RICHARDSON M, KOAY C S, TAKENOSHITA K, et al. High conversion efficiency mass-limited Sn-based laser plasma source for extreme ultraviolet lithography[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2004, 22(2): 785-790. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=27858db8dd5d355a23f9d8f5e8d7ec39
[13] OKAZAKI K, NAKAMURA D, AKIYAMA T, et al. Dynamics of debris from laser-irradiated Sn droplet for EUV lithography light source[C]//International Society for Optics and Photonics, Laser Applications in Microelectronic and Optoelectronic Manufacturing Ⅶ. San Jose, California, USA: International Society for Optics and Photonics, 2009: 72010T.
[14] HUDGINS D, GAMBINO N, ROLLINGER B, et al. Neutral cluster debris dynamics in droplet-based laser-produced plasma sources[J]. Journal of Physics, 2016, D49(18): 185205. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=087f53b0a082f5993a8fe3041cd22356
[15] CHEN H, LAN H, CHEN Z Q, et al. Experimental study on extreme ultraviolet radiation of liquid Sn drop target plasma irradiated by pulsed laser[J].Journal of Physics, 2015, 64(7):255-260(in Chinese). DOI: 10.1016/j.chroma.2012.02.034
[16] CHEN Z Q, WANG X B, ZUO D L, et al.Study on detection of tin drop target with extreme ultraviolet light source [J].High Power Laser and Particle Beams, 2014, 26(12):45-49(in Chinese). DOI: 10.7498/aps.64.075202
[17] YANG J, DING L, GE L L, et al.Study on heavy metals liquid jet by laser breakdown spectroscopy[J]. Chinese Journal of Lasers, 2012, 39(2):0215001(in Chinese). DOI: 10.3788/CJL201239.0215001
[18] RAYLEIGH L. On the instability of jets[J]. Proceedings of the London Mathematical Society, 1878, 1(1): 4-13. DOI: 10.1112/plms/s1-10.1.4
[19] YANG R Q, WANG X B, LAN H. Study on expansion characteristics of tin plasma plume produced by CO2 and Nd:YAG pulsed laser[J].Laser Technology, 2016, 40(2):223-226(in Chinese). http://www.opticsjournal.net/abstract.htm?id=OJ160329000163qXtZw3
[20] JANZEN C, FLEIGE R, NOLL R, et al. Analysis of small droplets with a new detector for liquid chromatography based on laser-induced breakdown spectroscopy[J]. Spectrochimica Acta, 2005, B60(7/8): 993-1001. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c4baceafc06a738730d9bd946ae4db4b
[21] MIZOGUCHI H. High CE technology for HVM EUV source[C]// International Society for Optics and Photonics, International Symposium on Extreme Ultraviolet Lithography. Brussel, Belgium: International Society for Optics and Photonics, 2012: 1-4.
[22] ZHANG Y W. Laser induced breakdown spectroscopy for the detection of heavy metals in environ mental pollution [D]. Changchun: Changchun University of Science and Technology, 2016: 10-15(in Chinese).
[23] KRIVOKORYTOV M S, VINOKHODOV A Y, SIDELNIKOV Y V, et al. Cavitation and spallation in liquid metal droplets produced by subpicosecond pulsed laser radiation[J]. Physical Review, 2017, E95(3): 031101. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ea3f9b29a53a90a8913e56891ffefc95
[24] VINOKHODOV A Y, KRIVOKORYTOV M S, SIDELNIKOV Y V, et al. Droplet-based, high-brightness extreme ultraviolet laser plasma source for metrology[J]. Journal of Applied Physics, 2016, 120(16): 163304. DOI: 10.1063/1.4966930
[25] HSIEH W F, ZHENG J B, WOOD C F, et al. Propagation velocity of laser-induced plasma inside and out side a transparent droplet[J]. Optics Letters, 1987, 12(8): 576-578. DOI: 10.1364/OL.12.000576
[26] CHEN Z Q, WANG X B, ZUO D L. Experimental study on the plasma of droplet jet induced by CO2 laser [J].Laser Technology, 2016, 40(6):888-891(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201606023