Analysis on frequency domain characteristics of magneto- optical imaging of laser welding crack
-
摘要: 为了研究旋转磁场激励下激光焊接裂纹磁光成像在频域内的特征, 采用对激光焊接裂纹磁光图像进行2维离散傅里叶变换的方法, 进行了理论分析和实验验证, 取得了旋转磁场不同励磁强度下激光焊接裂纹的频谱图数据。结合裂纹磁光图的空域特征, 对所获裂纹频谱图灰度值为255的点进行统计分析。结果表明, 激光焊接裂纹磁光图像的频域特征和空域特征有一定的对应关系; 在一个变化周期内(885帧磁光图), 对应频谱图上会出现先变小再变大、再变小再变大或相反的变化过程, 最终回到初始状态。这一结果验证了旋转磁场下裂纹磁光成像规律的正确性, 对激光焊接缺陷的无损检测是有帮助的。
-
关键词:
- 激光技术 /
- 傅里叶光学与光信号处理 /
- 频域特征 /
- 磁光成像 /
- 裂纹
Abstract: In order to study the characteristics of magneto-optical imaging of laser welding cracks under rotating magnetic field excitation in frequency domain, the method of 2-D discrete Fourier transform for magneto-optical image of laser welding crack was adopted. Theoretical analysis and experimental verification were carried out. Spectrum data of laser welding crack under different excitation intensities of rotating magnetic field were obtained. Combining spatial characteristics of crack magneto-optic maps, statistical analysis was carried out on the points whose gray value of crack spectrum was 255. The results show that, frequency domain characteristics of magneto-optic image of laser welding crack have a certain corresponding relationship with spatial domain characteristics. During a period of change (885 frames of magneto-optic map), the corresponding spectrum map will be a process of first decreasing, then enlarging, then decreasing, then enlarging or the opposite, and finally returning to the initial state. The results verify the correctness of magneto-optical imaging law of cracks under rotating magnetic field. It is helpful for non-destructive detection of laser welding defects. -
-
Figure 8. The change of points with gray level of 255 in Table 1
Figure 9. The change of points with gray level of 255 in Table 2
Table 1 Point number with gray level of 255 of spectrum images in Fig. 5
group No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 number 63 59 37 59 61 57 35 41 67 Table 2 Point number with gray level of 255 of spectrum images in Fig. 7
group No.1 No.2 No.3 No.4 No.5 No.6 No.7 number 39 49 63 39 51 77 39 -
[1] LI X Y, WU C S, LI W S. Study on the progress of welding science and technology in China[J]. Journal of Mechanical Engineering, 2012, 48(6): 19-31(in Chinese). DOI: 10.3901/JME.2012.06.019
[2] ZHANG Y L, ZHANG H Ch, ZHAO J X, et al. Review of non-destructive testing for remanufacturing of high end equipment[J]. Journal of Mechanical Engineering, 2013, 53(7):80-90(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxgcxb201307012
[3] XIA N, MENG X W, HUO Q Y, et al. Monitoring and detecting of defects during fiber laser welding[J]. Laser Technology, 2017, 41(6): 788-792(in Chinese).
[4] WEI L, CHANG Y S, ZHOU H Z, et al. Internal defect detection in ferromagnetic material equipment based on low-frequency electromagnetic technique in 20# steel plate[J]. IEEE Sensors Journal, 2018, 18(16): 6540-6546. DOI: 10.1109/JSEN.2018.2850977
[5] GAO X D, LAN Ch Zh, CHEN Z Q, et al. Dynamic detection and identification of magneto-optical imaging of welding defects[J]. Optics and Precision Engineering, 2017, 25(5): 1135-41(in Chinese). DOI: 10.3788/OPE.20172505.1135
[6] EOM I, YOON E, BAIK S H, et al. Retrieval of frequency spectrum from time-resolved spectroscopic data: Comparison of Fourier transform and linear prediction methods[J]. Optics Express, 2014, 22(25): 30512-30521. DOI: 10.1364/OE.22.030512
[7] PANDEY S S, MANU P S, VIKAS P. Image transformation and compression using fourier transformation[J]. International Journal of Current Engineering and Technology, 2015, 26(11): 1504-1510. http://d.old.wanfangdata.com.cn/Conference/WFHYXW546171
[8] SUN Z, HOU P, ZHI Y N, et al. Optical image processing for synthetic-aperture imaging ladar based on two-dimensional Fourier transform[J]. Applied Optics, 2014, 53(9): 1846-1858. DOI: 10.1364/AO.53.001846
[9] CHEN L, CHANG G, HE B, et al. Optical image conversion and encryption by diffraction, phase retrieval algorithm and incoherent superposition[J]. Optics and Lasers in Engineering, 2017, 88(6): 221-232.
[10] YAO S, CHEN L, CHANG G, et al. A new optical encryption system for image transformation[J]. Optics & Laser Technology, 2017, 97: 234-241. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=82d4f760cbb63b5c36dc4586c29aed52
[11] DU L L, GAO X D, ZHOU X F, et al. Study on the magneto-optical imaging law of laser welded crack under excitation of rotating magnetic field[J]. Laser Technology, 2018, 42(6): 58-62(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jgjs201806010
[12] MO X F, SHI J L, CHEN X G, et al. Measurement of SBS linewidth based on time-domain Fourier transform[J]. Laser Technology, 2013, 37(5): 561-564(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201305001
[13] LI W L, GE H L, REN Y, et al. Application of image processing technology in temperature measurement of laser pool[J]. Laser Technology, 2018, 42(5): 599-604(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jgjs201805004
[14] LIU S, SHAN T, TAO R, et al. Sparse discrete fractional Fourier transform and its applications[J]. IEEE Transactions on Signal Processing, 2014, 62(24): 6582-6595. DOI: 10.1109/TSP.2014.2366719
[15] LIAO J R, CHEN C M. Phase correction of discrete Fourier transform coefficients to reduce frequency estimation bias of single tone complex sinusoid[J]. Signal Processing, 2014, 94: 108-117. DOI: 10.1016/j.sigpro.2013.05.021
[16] CALIXTO S, SOLANO C, LESSRRD R A. Real-time optical image processing and polarization holography with dyed gelatin[J]. Applied Optics, 2011, 15(18): 142-146. DOI: 10.1364-AO.24.002941/
[17] BELEGA D, PETRI D, DALLET D. Accuracy analysis of complex sinusoid amplitude and phase estimation by means of the interpolated discrete-time Fourier transform algorithm[J]. Digital Signal Processing, 2016, 59: 9-18. DOI: 10.1016/j.dsp.2016.07.018
[18] CRISTOBAL G, SCHELKENS P, THIENPONT H. Optical and digital image processing: Fundamentals and applications[M]. New York, USA: Wiley-VCH, 2011: 169-178.
[19] MA N J, GAO X D, ZHOU X F, et al. Analysis of magneto-optical imaging characteristics of weld defects under magnetic field excitation[J]. Laser Technology, 2018, 42(4): 97-102(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jgjs201804017
[20] LI W, YUAN X, CHEN G, et al. High sensitivity rotating alternating current field measurement for arbitrary-angle underwater cracks[J]. NDT & E International, 2016, 79: 123-131. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=09de9d68a09c66b31ad2f5cf292ee220
-
期刊类型引用(2)
1. 胡莉,席锋. 石墨烯纳米片阵列的表面等离激元法诺共振. 激光技术. 2023(01): 19-24 . 本站查看
2. 陈雨微,卞立安,刘培国,王建,范崇祎. 基于多层F-P谐振腔的石墨烯吸波体设计. 激光技术. 2023(03): 317-321 . 本站查看
其他类型引用(0)