高级检索

基于位置敏感探测器的组合导航技术研究

蒋晓东, 于纪言, 朱立坤

蒋晓东, 于纪言, 朱立坤. 基于位置敏感探测器的组合导航技术研究[J]. 激光技术, 2019, 43(3): 335-340. DOI: 10.7510/jgjs.issn.1001-3806.2019.03.009
引用本文: 蒋晓东, 于纪言, 朱立坤. 基于位置敏感探测器的组合导航技术研究[J]. 激光技术, 2019, 43(3): 335-340. DOI: 10.7510/jgjs.issn.1001-3806.2019.03.009
JIANG Xiaodong, YU Jiyan, ZHU Likun. Research of combined navigation technology based on position sensitive detectors[J]. LASER TECHNOLOGY, 2019, 43(3): 335-340. DOI: 10.7510/jgjs.issn.1001-3806.2019.03.009
Citation: JIANG Xiaodong, YU Jiyan, ZHU Likun. Research of combined navigation technology based on position sensitive detectors[J]. LASER TECHNOLOGY, 2019, 43(3): 335-340. DOI: 10.7510/jgjs.issn.1001-3806.2019.03.009

基于位置敏感探测器的组合导航技术研究

基金项目: 

国家自然科学基金资助项目 116021111

详细信息
    作者简介:

    蒋晓东(1994-), 男, 硕士研究生, 现主要从事激光探测与制导的研究

    通讯作者:

    于纪言, E-mail:jxd0204@126.com

  • 中图分类号: TN249

Research of combined navigation technology based on position sensitive detectors

  • 摘要: 为了减小现有小型旋翼类无飞机飞行过程中卫星/惯性组合导航系统的制导误差,提高其导航系统定位精确度,提出2维位置敏感探测器激光制导与机载卫星/惯性组合导航系统结合的新型导航系统方案。该系统利用1064nm红外脉冲激光作为引导光源,采用中间飞行段卫星/惯性导航、末端飞行段激光照射制导结合的方式,进行了理论分析和对比实验验证。结果表明,在室外飞行环境和室内强、弱、正常光照飞行环境下,该系统始终保持较高的定位精度和结果一致性;相对比其它现有制导方式,该系统的探测频率始终保持5kHz、定位精度始终保持其圆形概率误差处于0.10m数量级,取得了较好的定位实验结果。该系统具有鲁棒性强、电路简单、探测灵活、高速精确的特征,对无人机末端制导具有重要意义。
    Abstract: In order to reduce the guidance error of a satellite/inertial integrated navigation system and improve its navigation and positioning accuracy, a new navigation system scheme combining position sensitive detector (PSD) laser guidance with airborne satellite/inertial integrated navigation system was proposed. In this system, 1064nm infrared pulse laser was used as the guiding light source, and the combination of satellite/inertial navigation in the middle flight segment and laser guidance in the terminal flight segment was adopted. Through theoretical analysis and comparative experiments, the results show that the system always maintains high positioning accuracy and consistent results in the outdoor flight environment and the indoor strong, weak and normal lighting flight environment. Compared with the other existing guidance methods, the detection frequency of the system always remains 5kHz, and the positioning accuracy always keeps its circular error probable at the order of 0.10m. Good positioning experimental results are obtained. The system has the characteristics of strong robustness, simple circuit, flexible detection, high speed and precision. It is of great importance to the terminal guidance of unmanned aerial vehicle.
  • Figure  1.   The process of navigation in flight

    Figure  2.   General structure diagram

    Figure  3.   Working principle of PSD sensor

    Figure  4.   Relationship of transformation in coordinate system

    Figure  5.   Circuit design of PSD signal processing

    Figure  6.   Software design of the intergrated navigation

    Figure  7.   Trajectory of PSD laser navigation

    Table  1   Prarmeters of laser emitter

    wavelength/
    nm
    pulse
    width/ns
    repetition
    frequency/Hz
    pulse
    energy/mJ
    laser beam
    divergence/mrad
    collimating
    method
    1064 10 10 80 1~5 optical telescope mode
    下载: 导出CSV

    Table  2   Comparison of 4 navigation methods

    navigation method outdoors indoors and week
    lighting conditions
    indoors and normal
    lighting conditions
    indoors and bright
    ighting conditions
    period CEP period CEP period CEP period CEP
    GPS/IMU integrated navigation 20Hz 2.70m 20Hz 20Hz 20Hz
    image color recognition navigation 20Hz 0.33m 20Hz 2m 20Hz 0.35m 20Hz 2.20m
    image feature matching navigation 0.812Hz 0.21m
    PSD laser navigation 5kHz 0.10m 5kHz 0.10m 5kHz 0.10m 5kHz 0.11m
    下载: 导出CSV
  • [1]

    LI Zh P, ZHANG Y G, AI Y, et al. Laser tracking and wireless power supply system for unmanned aerial vehicles[J]. Laser Technology, 2018, 42(3):306-310(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jgjs201803004

    [2]

    XU Ch, HUANG D Q. Error analysis for target localization with unmanned aerial vehicle electro-optical detection platform[J]. Chinese Journal of Scientific Instrument, 2013, 34(10):2265-2270(in Chinese).

    [3]

    CHEN Zh C.Research on UAV navigation system based on MEMS/GPS integrated navigation[D]. Harbin: Harbin Engineering University, 2016: 1-7(in Chinese).

    [4]

    HAO X Q, HAO X G, DAI Zh, et al. GPS-IMU supported photogrammetry error sources and accuracy optimization[J]. Geomatics & Spatial Information Technology, 2018, 41(4):124-127(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dbch201804034

    [5]

    WU H H. UAV navigation system based on power patrol[D]. Huainan: Anhui University of Science and Technology, 2017: 1-6(in Chinese).

    [6]

    LI J Y, XIU J Sh, LIN Sh, et al. Automatic positioning system of UAV based on artificial marker[J]. Microcontrollers & Embedded Systems, 2017(9):29-32(in Chinese). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DPJY201709009.htm

    [7]

    LIU K, ZHANG J T, YAN Zh G. A method for improving landing error of UAV automatic return[J]. Modern Electronics Technique, 2018, 41(6):61-64(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-XDDJ201806016.htm

    [8]

    MA Y, WU A G, DU Ch Y. Vision based localization algorithm for unmanned aerial vehicles in flight[J]. Electronics Optics & Control, 2013, 20(11):42-46(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-DGKQ201311011.htm

    [9]

    MIAO X, ZHANG D B, SONG Y H, et al. UAV precise recycling technology based on laser end guidance[J]. Laser Technology, 2018, 42(5):687-691(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201805019.htm

    [10]

    HUANG P, CHEN B, LI Y. Displacement measurement syatem based on phase-sensitive detection and postion sensitive detector[J]. Laser Technology, 2017, 41(2):235-239(in Chinese).

    [11]

    YANG Sh L, SU Y B, HE J T, et al. Study of measurement accuracy of position sensitive detectors[J]. Laser Technology, 2014, 38(6):830-834(in Chinese). http://www.jgjs.net.cn/EN/Y2014/V38/I6/830

    [12]

    HAN Z P. Exterior ballistics of projectile and rocket[M]. Beijing:Beijing Institute of Technology Press, 2008:138-142(in Chinese).

    [13]

    LIU Y Zh. Advanced dynamics[M]. Beijing:Higher Education Press, 2016:124-199(in Chinese).

    [14]

    ZHANG Y J, QIU Z R, LI X H, et al. Laser tracking coordinate measurement system based on PSD[J]. Transducer and Microsystem Technologies, 2011, 30(7):116-119(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CGQJ201107036.htm

    [15]

    YU R, ZHU Q, GUO Q, et al. Design of PSD data acquisition circuit based on SCM[J]. Modern Electronics Technique, 2013, 36(21):141-144(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDJ201321041.htm

    [16]

    GE Y, GU J L, XIA Y, et al. Design of 2-D PSD signal acquisition device based on PSD[J]. Transducer and Microsystem Technologies, 2017, 36(7):86-88(in Chinese).

    [17]

    YANG Sh, CHENG H, LI T, et al. UAV reconnaissance images accurate targeting method based on image registration[J]. Infrared Technology, 2017, 39(6):529-534(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HWJS201706011.htm

图(7)  /  表(2)
计量
  • 文章访问数:  6
  • HTML全文浏览量:  0
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-26
  • 修回日期:  2018-07-26
  • 发布日期:  2019-05-24

目录

    /

    返回文章
    返回