Research of combined navigation technology based on position sensitive detectors
-
摘要: 为了减小现有小型旋翼类无飞机飞行过程中卫星/惯性组合导航系统的制导误差,提高其导航系统定位精确度,提出2维位置敏感探测器激光制导与机载卫星/惯性组合导航系统结合的新型导航系统方案。该系统利用1064nm红外脉冲激光作为引导光源,采用中间飞行段卫星/惯性导航、末端飞行段激光照射制导结合的方式,进行了理论分析和对比实验验证。结果表明,在室外飞行环境和室内强、弱、正常光照飞行环境下,该系统始终保持较高的定位精度和结果一致性;相对比其它现有制导方式,该系统的探测频率始终保持5kHz、定位精度始终保持其圆形概率误差处于0.10m数量级,取得了较好的定位实验结果。该系统具有鲁棒性强、电路简单、探测灵活、高速精确的特征,对无人机末端制导具有重要意义。Abstract: In order to reduce the guidance error of a satellite/inertial integrated navigation system and improve its navigation and positioning accuracy, a new navigation system scheme combining position sensitive detector (PSD) laser guidance with airborne satellite/inertial integrated navigation system was proposed. In this system, 1064nm infrared pulse laser was used as the guiding light source, and the combination of satellite/inertial navigation in the middle flight segment and laser guidance in the terminal flight segment was adopted. Through theoretical analysis and comparative experiments, the results show that the system always maintains high positioning accuracy and consistent results in the outdoor flight environment and the indoor strong, weak and normal lighting flight environment. Compared with the other existing guidance methods, the detection frequency of the system always remains 5kHz, and the positioning accuracy always keeps its circular error probable at the order of 0.10m. Good positioning experimental results are obtained. The system has the characteristics of strong robustness, simple circuit, flexible detection, high speed and precision. It is of great importance to the terminal guidance of unmanned aerial vehicle.
-
-
Table 1 Prarmeters of laser emitter
wavelength/
nmpulse
width/nsrepetition
frequency/Hzpulse
energy/mJlaser beam
divergence/mradcollimating
method1064 10 10 80 1~5 optical telescope mode Table 2 Comparison of 4 navigation methods
navigation method outdoors indoors and week
lighting conditionsindoors and normal
lighting conditionsindoors and bright
ighting conditionsperiod CEP period CEP period CEP period CEP GPS/IMU integrated navigation 20Hz 2.70m 20Hz — 20Hz — 20Hz — image color recognition navigation 20Hz 0.33m 20Hz 2m 20Hz 0.35m 20Hz 2.20m image feature matching navigation 0.812Hz 0.21m — — — — — — PSD laser navigation 5kHz 0.10m 5kHz 0.10m 5kHz 0.10m 5kHz 0.11m -
[1] LI Zh P, ZHANG Y G, AI Y, et al. Laser tracking and wireless power supply system for unmanned aerial vehicles[J]. Laser Technology, 2018, 42(3):306-310(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jgjs201803004
[2] XU Ch, HUANG D Q. Error analysis for target localization with unmanned aerial vehicle electro-optical detection platform[J]. Chinese Journal of Scientific Instrument, 2013, 34(10):2265-2270(in Chinese).
[3] CHEN Zh C.Research on UAV navigation system based on MEMS/GPS integrated navigation[D]. Harbin: Harbin Engineering University, 2016: 1-7(in Chinese).
[4] HAO X Q, HAO X G, DAI Zh, et al. GPS-IMU supported photogrammetry error sources and accuracy optimization[J]. Geomatics & Spatial Information Technology, 2018, 41(4):124-127(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dbch201804034
[5] WU H H. UAV navigation system based on power patrol[D]. Huainan: Anhui University of Science and Technology, 2017: 1-6(in Chinese).
[6] LI J Y, XIU J Sh, LIN Sh, et al. Automatic positioning system of UAV based on artificial marker[J]. Microcontrollers & Embedded Systems, 2017(9):29-32(in Chinese). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DPJY201709009.htm
[7] LIU K, ZHANG J T, YAN Zh G. A method for improving landing error of UAV automatic return[J]. Modern Electronics Technique, 2018, 41(6):61-64(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-XDDJ201806016.htm
[8] MA Y, WU A G, DU Ch Y. Vision based localization algorithm for unmanned aerial vehicles in flight[J]. Electronics Optics & Control, 2013, 20(11):42-46(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-DGKQ201311011.htm
[9] MIAO X, ZHANG D B, SONG Y H, et al. UAV precise recycling technology based on laser end guidance[J]. Laser Technology, 2018, 42(5):687-691(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201805019.htm
[10] HUANG P, CHEN B, LI Y. Displacement measurement syatem based on phase-sensitive detection and postion sensitive detector[J]. Laser Technology, 2017, 41(2):235-239(in Chinese).
[11] YANG Sh L, SU Y B, HE J T, et al. Study of measurement accuracy of position sensitive detectors[J]. Laser Technology, 2014, 38(6):830-834(in Chinese). http://www.jgjs.net.cn/EN/Y2014/V38/I6/830
[12] HAN Z P. Exterior ballistics of projectile and rocket[M]. Beijing:Beijing Institute of Technology Press, 2008:138-142(in Chinese).
[13] LIU Y Zh. Advanced dynamics[M]. Beijing:Higher Education Press, 2016:124-199(in Chinese).
[14] ZHANG Y J, QIU Z R, LI X H, et al. Laser tracking coordinate measurement system based on PSD[J]. Transducer and Microsystem Technologies, 2011, 30(7):116-119(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CGQJ201107036.htm
[15] YU R, ZHU Q, GUO Q, et al. Design of PSD data acquisition circuit based on SCM[J]. Modern Electronics Technique, 2013, 36(21):141-144(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDJ201321041.htm
[16] GE Y, GU J L, XIA Y, et al. Design of 2-D PSD signal acquisition device based on PSD[J]. Transducer and Microsystem Technologies, 2017, 36(7):86-88(in Chinese).
[17] YANG Sh, CHENG H, LI T, et al. UAV reconnaissance images accurate targeting method based on image registration[J]. Infrared Technology, 2017, 39(6):529-534(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HWJS201706011.htm