高级检索

激光发射天线仿真平台设计

王顺, 程高峰, 李强, 杨建昌, 闫宗群

王顺, 程高峰, 李强, 杨建昌, 闫宗群. 激光发射天线仿真平台设计[J]. 激光技术, 2019, 43(1): 131-136. DOI: 10.7510/jgjs.issn.1001-3806.2019.01.026
引用本文: 王顺, 程高峰, 李强, 杨建昌, 闫宗群. 激光发射天线仿真平台设计[J]. 激光技术, 2019, 43(1): 131-136. DOI: 10.7510/jgjs.issn.1001-3806.2019.01.026
WANG Shun, CHENG Gaofeng, LI Qiang, YANG Jianchang, YAN Zongqun. Simulation design of laser transmitting telescope[J]. LASER TECHNOLOGY, 2019, 43(1): 131-136. DOI: 10.7510/jgjs.issn.1001-3806.2019.01.026
Citation: WANG Shun, CHENG Gaofeng, LI Qiang, YANG Jianchang, YAN Zongqun. Simulation design of laser transmitting telescope[J]. LASER TECHNOLOGY, 2019, 43(1): 131-136. DOI: 10.7510/jgjs.issn.1001-3806.2019.01.026

激光发射天线仿真平台设计

详细信息
    作者简介:

    王顺(1991-),男,硕士,助教,主要从事光学设计和光电对抗的研究工作。E-mail:zgwangshun@163.com

  • 中图分类号: TN202;O439

Simulation design of laser transmitting telescope

  • 摘要: 为了给激光发射天线的设计优化提供一种可视化自动设计手段,采用MATLAB仿真技术构建了一种基于倒置望远镜系统结构的激光发射天线仿真平台, 进行了激光发射天线的理论分析和仿真实验验证。通过灵活设置激光谐振腔关键结构参量以及倒置望远镜系统透镜组合方式,实现了发射天线发射前后的激光2维光强分布、激光3维光强分布、激光光束3维结构以及变换后激光束腰与透镜组合离焦量的关系曲线的仿真。结果表明,波长550nm的激光变换后束腰半径从0.073mm变为12.202mm,发散角从0.275°变为0.00164°,成功压缩了激光发散角; 此平台进行的仿真过程形象直观,可根据需要自动优化设计出最优的激光发射天线结构。该仿真平台的构建为激光发射天线的可视化自动设计提供了全新的方法。
    Abstract: In order to provide a visual automatic design method for the design optimization of laser transmitting telescopes, by using Matlab simulation technology, A simulation platform of laser transmitting telescope based on an inverted telescope system structure was constructed. Theoretical analysis and experimental verification of the laser transmitting telescope were carried out. By setting the key structural parameters of the laser resonator and the lens combination of the inverted telescope system, 2-D laser intensity distribution, 3-D laser intensity distribution and 3-D structure of laser beam before and after launch were achieved. The relationship between laser beam waist and the defocus value of the combined lens was simulated. The results show that the waist radius is from 0.073nm to 12.202mm after laser transformation at wavelength of 550nm. The divergence angle changes from 0.275°to 0.00164°. Laser divergence angle is successfully compressed. The simulation process of the platform is visual and intuitive. The optimum structure of laser transmitting telescope can be automatically optimized according to the need. The simulation platform provides a new method for the automatic visual design of laser transmitting telescopes.
  • Figure  1.   Principle diagram of laser transmitting telescope

    Figure  2.   Structure model of laser transmitting telescope

    Figure  3.   Graphical user interface of MATLAB GUI

    Figure  4.   2-D light intensity distribution of spot on laser beam waist

    Figure  5.   3-D light intensity distribution of the spot on laser beam waist

    Figure  6.   3-D beam of laser

    Figure  7.   Relationship between laser beam waist and defocus distance of lens

  • [1]

    ZHOU B K. The principle of laser [M]. Beijing: National Defense Industry Press, 2014: 67-81(in Chinese).

    [2]

    SUN H Y, ZHANG T H, HAN Y. Laser technology for military[M].Beijing: National Defense Industry Press, 2011: 1-21 (in Chinese).

    [3]

    CHENG J, SUN N C, WANG Zh X, et al. Maladjustment and beam expanded ratio of laser beam expanding telescope [J]. Laser Techno-logy, 1995, 19(1): 57-60 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS501.020.htm

    [4]

    ZENG X D, YU Ch Q, ZHAN Y Sh. Collimation of semiconductor laser beams[J].Acta Photonica Sinica, 1999, 19(6): 295-298 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-GXXB903.001.htm

    [5]

    QU W J. Optical experiment simulations with matlab [D].Xi'an: Northwestern Ploytechnical University, 2004: 5-16 (in Chinese).

    [6]

    LIU D Y, YI Sh H, GU J L. Principle of laser antenna design and light spot preservation with angular method [J]. Optics & Optoelectronic Technology, 2006, 4(2): 19-22(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXGD200602006.htm

    [7]

    GU J L, BI Ch N, YI Sh H. Laser antenna design by the angular control method [J]. Optical Technique, 2006, 32(s1): 148-150(in Chinese). http://en.cnki.com.cn/article_en/cjfdtotal-gxjs2006s1048.htm

    [8]

    HAO P M, YUAN L Y, LI K X, et al. ∅300 Hartmann field flattening laser beam expander [J].Proceedings of the SPIE, 2007, 6722: 672206. DOI: 10.1117/12.782673

    [9]

    FAN L N, ZHU A M, LIU L, et al. Optical design of laser beam expanding telescope [J]. Infrared, 2007, 28(8):20-22 (in Chin-ese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HWAI200708007.htm

    [10]

    ZHENG P, YANG Y P, GAO H Y, et al. Design of two-level laser beam expander based on Galilean structure [J]. Journal of Applied Optic, 2008, 29(3): 347-350 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YYGX200803006.htm

    [11]

    GONG D, WANG H, TIAN T Y, et al. The optical design of high-power laser-beam expander [J]. Laser Technology, 2009, 33(4): 426-428(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS200904027.htm

    [12]

    WANG X J. Measurement and design of the beam expander as 60 micro-radiation antenna [J]. Acta Photonica Sinica, 2011, 40(s1): 73-76 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-GZXB2011S1017.htm

    [13]

    KANG Z J, HAN X Y, LI C, et al. Analysis of the radio on free space optical transmission link for the satellite-to-ground communication [J]. Acta Optica Sinica, 2014, 34(10): 1001-1004. http://en.cnki.com.cn/Article_en/CJFDTotal-GXXB201410005.htm

    [14]

    ZHANG L. Novel structure design of laser-emitting antenna system and its transmission efficiency analysis [D]. Chengdu: University of Electronic Science and Technology of China, 2016: 9-18 (in Chin-ese).

    [15]

    LIU J Q, WANG N, YANG Y Y, et al. A micro acousto-optic Q-switched laser with narrow pluse width [J]. Laser Technology, 2017, 41(4): 562-565 (in Chinese). http://www.jgjs.net.cn/EN/abstract/abstract15631.shtml

    [16]

    DENG Ch R. Based on the MATLAB GUI multi-functional calculation system design and realization [D]. Nanchang: Nanchang University, 2012: 6-12 (in Chinese).

    [17]

    ZHANG W Sh, SHANG J F, LIU X L, et al. Design of wave optics simulation platform based on MATLAB GUI[J]. Physical Experiment of College, 2013, 26(3): 85-87 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-DWSL201303029.htm

    [18]

    CHENG G F, WANG Sh, LI Q, et al. Simulation design of the laser destruction for CCD based on MATLAB[J]. Journal of Changchun University of Science and Technology, 2017, 40(6): 52-56 (in Chinese).

    [19]

    ZHANG Q G, LI Ch G, LOU Y L, et al. Amplitude optical pupil filters with power function distribution [J]. Laser Technology, 2017, 41(5): 743-748 (in Chinese). http://www.jgjs.net.cn/EN/Y2017/V41/I5/743

    [20]

    SUN H, XU J M, ZHANG H Ch, et al. Simulation of three-junction GaAs solar cell temperature field by continuous wave laser irradiation [J]. Laser Technology, 2018, 42(2): 239-244 (in Chinese). http://www.en.cnki.com.cn/Article_en/CJFDTotal-JGJS201802019.htm

图(7)
计量
  • 文章访问数:  6
  • HTML全文浏览量:  0
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-25
  • 修回日期:  2018-06-27
  • 发布日期:  2019-01-24

目录

    /

    返回文章
    返回