高级检索

毫秒/纳秒激光致碳纤维环氧树脂损伤形貌研究

姜珊珊, 蔡继兴, 金光勇, 苑博识

姜珊珊, 蔡继兴, 金光勇, 苑博识. 毫秒/纳秒激光致碳纤维环氧树脂损伤形貌研究[J]. 激光技术, 2018, 42(6): 775-779. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.009
引用本文: 姜珊珊, 蔡继兴, 金光勇, 苑博识. 毫秒/纳秒激光致碳纤维环氧树脂损伤形貌研究[J]. 激光技术, 2018, 42(6): 775-779. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.009
JIANG Shanshan, CAI Jixing, JIN Guangyong, YUAN Boshi. Research of damage morphology of carbon fiber epoxy resin irradiated by millisecond/nanosecond pulsed laser[J]. LASER TECHNOLOGY, 2018, 42(6): 775-779. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.009
Citation: JIANG Shanshan, CAI Jixing, JIN Guangyong, YUAN Boshi. Research of damage morphology of carbon fiber epoxy resin irradiated by millisecond/nanosecond pulsed laser[J]. LASER TECHNOLOGY, 2018, 42(6): 775-779. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.009

毫秒/纳秒激光致碳纤维环氧树脂损伤形貌研究

详细信息
    作者简介:

    姜珊珊(1993-), 女, 硕士研究生, 现主要从事激光及其与物质相互作用方面的研究

    通讯作者:

    金光勇, E-mail:jgyciom@163.com

  • 中图分类号: O414

Research of damage morphology of carbon fiber epoxy resin irradiated by millisecond/nanosecond pulsed laser

  • 摘要: 为了研究碳纤维环氧树脂在不同脉宽激光辐照下的损伤形貌,采用全自动变焦测量技术进行了实验验证,测量了碳纤维环氧树脂在毫秒/纳秒脉冲激光辐照下,损伤面积、损伤深度以及损伤形貌随激光能量密度的变化。结果表明,在毫秒脉冲激光作用下,材料损伤区域中心会产生一定的温度积累,损伤区域有一定的热效应,出现熔融、热解等现象,当激光能量密度为20.5J/cm2时,材料的损伤深度达到了47.3μm,材料表面析出的碳化物的高度为157.1μm,损伤深度以及表面碳化物的高度都随着能量密度的增大而增大;在纳秒激光作用下,光斑周围有明显的热反应区域,当能量密度大于47.3J/cm2时,表面的热反应区尤为明显,损伤面积随激光能量密度的增大明显增大,由于作用时间较短,损伤主要为表层损伤;树脂热解的气体向外膨胀,导致纤维结构断裂。研究结果为激光对碳纤维环氧树脂的损伤效果提供了实验依据。
    Abstract: In order to study the damage morphology of carbon fiber epoxy resin irradiated by laser with different pulse widths, automatic zoom measurement technique was used to test the changes of the damage area, damage depth and damage morphology of carbon fiber epoxy resin with laser energy density. The results show that, under the action of millisecond pulsed laser, a certain temperature accumulation will be produced in the center of the damage region of the composite material. The damage region has some thermal effect, melting, pyrolysis and so on. When the laser energy density is 20.5J/cm2, the damage depth of the material reaches 47.3μm, and the height of carbide precipitated on the surface of the material is 157.1μm. The depth of damage and the height of surface carbonization increase with the increase of energy density. There are obvious thermal reaction regions around the spot under the action of nanosecond laser. When the energy density is greater than 47.3J/cm2, the thermal reaction area of the surface is particularly obvious. And the damage area increases obviously with the increase of laser energy density. Because of the short time, the damage is mainly surface damage and the outward pyrolysis gas expedition results in the fracture of fiber structure. The research results provide an experimental basis for laser damage effect on carbon fiber epoxy resin.
  • Figure  1.   Experimental system for laser-irradiating carbon fiber epoxy resin composite material

    Figure  2.   Relationship between damage area of carbon fiber epoxy resin and energy density under the action of millisecond/nanosecond pulsed laser

    Figure  3.   a—damage depth of carbon fiber epoxy resin with energy density of 20.5J/cm2 under millisecond pulsed laser   b—damage depth of carbon fiber epoxy resin with energy density of 20.5J/cm2 under nanosecond pulsed laser

    Figure  4.   Relationship between damage depth of carbon fiber epoxy resin and energy density under millisecond/nanosecond pulsed laser

    Figure  5.   Relationship between carbonized height of carbon fiber epoxy resin and energy density under millisecond/nanosecond pulsed laser

    Figure  6.   Damage morphology of carbon fiber epoxy resin with energy density under the action of millisecond pulsed laser

    Figure  7.   Damage morphology of carbon fiber epoxy resin with energy density under the action of nanosecond pulsed laser

  • [1]

    MIYAJI G, MIYAZAKI K. Nanostructure formation process in low-fluence fetosecond-laser ablation of thin film surface[J]. Chinese Optics Letters, 2007, 5(s1):S201-S203. http://www.opticsinfobase.org/col/abstract.cfm?URI=col-5-S1-S201

    [2]

    LATHAM W P. Laser effects research and modeling to support high energy laser systems[J]. Proceedings of the SPIE, 2001, 4376:5-14. DOI: 10.1117/12.438181

    [3]

    SUN Ch W. Laser radiation effects[M]. Beijing:Publishing House of Defense Industry, 2002:6-7(in Chinese).

    [4]

    WANG G B, LUO F, LIU C L, et al.The research of the ablation morphology of the composite reinforced by polyarylamide fibers irradia-ted by laser[J]. Laser Technology, 2006, 30(2):377-378(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS200602017.htm

    [5]

    HUA Y Q, XIAO T, XUE Q, et al. Experimental study about laser cutting of carbon fiber reinforced polymer[J]. Laser Technology, 2013, 37(5):555-570(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201305002

    [6]

    JIANG Y, CHEN G Y, ZHOU C, et al. Research of carbon fiber reinforced plastic cut by picosecond laser[J]. Laser Technology, 2017, 41(6):821-825(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201706011

    [7]

    MU J Y, WAN H, BAI Sh X. Thermal ablation law of cured epoxy under long pulse laser irradiation[J]. High Power Laser and Particle Beams, 2008, 20(1):36-40(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qjgylzs200801008

    [8]

    YU H, GUO R X, XIA H T, et al. Experimental study on the elastic modulus of WC/Cu composite material with different WC content[J]. Laser Technology, 2013, 37(2):139-142(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201302001

    [9]

    WANG Q, JIAO J K, WANG F Y, et al. Finite element analysis of CFRP and stainless steel laser welding. Laser Technology, 2016, 40(6):853-859(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201606017

    [10]

    ZHANG Y Q, WANG G B, TANG X S. Absorption characteristics analysis of composite irradiated by CW laser[J]. Laser Technology, 2009, 33(6) 590-592(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs200906020

    [11]

    WANG G B, LIU C L. Absorption characteristics of the composite reinforced by polyaryl amide fibers irradiated by high power laser[J].High Power Laser and Particle Beams, 2003, 15(11):1065-1067(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qjgylzs200311007

    [12]

    WANG G B, LIU C L. Experimental research of the ablation thres-hold of Kevlar/epoxy[J]. Laser Technology, 2003, 27(5):457-459(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS200305023.htm

    [13]

    RODDEN W S O, KUDESIA S S, HAND D P, et al. A comprehensive study of the long pluse Nd:YAG laser drilling of multi-layer carbon fibre composites[J]. Optics Cornrnunications, 2002, 210(3):319-328. http://www.sciencedirect.com/science/article/pii/S0030401802018072

    [14]

    BENARD Q, FOIS M, GRISEL M, et al. Surface treatment of carbon/epoxy and glass/epoxy composites with an excimer laser beam[J]. International Journal of Adhesion and Adhesives, 2006, 26(7):543-549. DOI: 10.1016/j.ijadhadh.2005.07.008

    [15]

    WAN H, HU K W, MU J Y, et al. Damage analysis of fiber reinforced resin matrix composites irradiated by CW laser[J]. High Power Laser and Particle Beams, 2008, 20(1):6-10(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qjgylzs200801002

    [16]

    HUANG Y G, LIU Sh B, LONG L Ch, et al. Observation on the process of continuous-wave Nd:YAG laser ablation on carbon fiber composite material[J]. Chinese Journal of Lasers, 2008, 35(12):2042-2046(in Chinese). DOI: 10.3788/JCL

    [17]

    ZHAO X. Research on processing of carbon fiber materials based on the short pulse laser[D]. Harbin: Harbin Institute of Technology, 2014: 13-45(in Chinese).

    [18]

    ECAULT R, BOUSTIE M, TOUCHARD F, et al. A study of composite material damage induced by laser shock waves[J]. Composites, 2013, A53:54-64. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1cbe039c2f05ab92f8865e191adba13d

  • 期刊类型引用(7)

    1. 郭泓林,江浩,邓翔. 基于机器视觉的碳纤维材料断裂损伤自动识别系统. 自动化技术与应用. 2022(07): 105-109 . 百度学术
    2. 刘坤,刘百麟,邹恒光. 天基激光对GEO卫星的毁伤效能分析与启示. 航天器环境工程. 2022(05): 545-551 . 百度学术
    3. 孙佳鑫,陈重全,杨心蕊,南朋玉,沈中华. 激光辐照CFRP下温度对铺层结构的敏感性研究. 激光技术. 2021(03): 280-285 . 本站查看
    4. 张潇允,张巍,夏盛强,马遥,金光勇. 高功率激光辐照CFRP的温度场和应力场的数值分析. 激光技术. 2021(05): 636-641 . 本站查看
    5. 底才翔,孙艳军,王菲,陈燨,丁伟. 激光切割碳纤维复合材料的温度场仿真. 激光技术. 2020(05): 628-632 . 本站查看
    6. 郭敏超,王明娣,张胜江,林瑶,王欣玥,尹梓航,王贤宝. FR-4覆铜板飞秒激光微孔加工工艺研究. 中国激光. 2020(12): 135-143 . 百度学术
    7. 吴鹏,范云茹,郭嘉伟,刘晓旭,周强,邓光伟,宋海智,王浟. 纳秒脉冲激光加工高反射率铝膜. 激光技术. 2019(06): 779-783 . 本站查看

    其他类型引用(5)

图(7)
计量
  • 文章访问数:  6
  • HTML全文浏览量:  0
  • PDF下载量:  5
  • 被引次数: 12
出版历程
  • 收稿日期:  2018-01-07
  • 修回日期:  2018-02-11
  • 发布日期:  2018-11-24

目录

    /

    返回文章
    返回