高级检索

瑞利BOTDA系统的2维提升小波降噪方法

刘薇, 尚秋峰

刘薇, 尚秋峰. 瑞利BOTDA系统的2维提升小波降噪方法[J]. 激光技术, 2018, 42(3): 346-350. DOI: 10.7510/jgjs.issn.1001-3806.2018.03.011
引用本文: 刘薇, 尚秋峰. 瑞利BOTDA系统的2维提升小波降噪方法[J]. 激光技术, 2018, 42(3): 346-350. DOI: 10.7510/jgjs.issn.1001-3806.2018.03.011
LIU Wei, SHANG Qiufeng. 2-D lifting wavelet de-noising method for Rayleigh BOTDA system[J]. LASER TECHNOLOGY, 2018, 42(3): 346-350. DOI: 10.7510/jgjs.issn.1001-3806.2018.03.011
Citation: LIU Wei, SHANG Qiufeng. 2-D lifting wavelet de-noising method for Rayleigh BOTDA system[J]. LASER TECHNOLOGY, 2018, 42(3): 346-350. DOI: 10.7510/jgjs.issn.1001-3806.2018.03.011

瑞利BOTDA系统的2维提升小波降噪方法

基金项目: 

河北省自然科学基金资助项目 F2014502098

国家自然科学基金资助项目 61377088

详细信息
    作者简介:

    刘薇(1993-), 女, 硕士研究生, 主要从事光纤传感的研究

    通讯作者:

    尚秋峰, E-mail:lindashqf@126.com

  • 中图分类号: TP212.9

2-D lifting wavelet de-noising method for Rayleigh BOTDA system

  • 摘要: 为了解决基于瑞利散射的布里渊光时域分析系统(BOTDA)中传感信号受噪声干扰严重的问题,采用2维提升小波变换算法,将测量信号从1维空间转换到2维空间,进行阈值降噪处理。通过理论分析和实验验证,取得了传统小波与2维提升小波降噪数据。结果表明,2维提升小波变换比传统小波变换信噪比提高约10dB,运算量减少了1/3;2维提升小波充分利用测量信号时间上的相关性,变换结构简单、运算速度快、降噪效果优于传统小波,适用于瑞利BOTDA系统降噪。该结果对光纤传感系统中信号降噪的研究有一定参考价值。
    Abstract: In order to solve the problem that the sensor signal is seriously disturbed by noise in a Brillouin optical time domain analysis (BOTDA) system based on Rayleigh scattering, the 2-D lifting wavelet transform algorithm was used to convert the measured signal from 1-D space to 2-D space, and the noise was reduced by threshold. Through the theoretical analysis and experimental verification, the traditional wavelet and 2-D lifting wavelet denoised data were obtained. The results show that the signal-to-noise ratio of the 2-D lifting wavelet transform is about 10dB higher than that of the traditional wavelet transform, and the computation amount is reduced by 1/3. The 2-D lifting wavelet makes full use of the time correlation of the measured signal, the transformation structure is simple, the operation speed is quick and the noise reduction effect is superior to the traditional wavelet. It is suitable for noise reduction in a Rayleigh BOTDA system. The results of this paper are of great reference to the research of signal denoising in optical fiber sensing systems.
  • Figure  1.   Architecture of Rayleigh BOTDA system

    Figure  2.   a—measure signals at different scan frequencies b—3-D graph of measurement signals c—top view of 3-D figure

    Figure  3.   a—denoised signals at different scan frequencies b—3-D graph of denoised signals c—top view of 3-D figure

    Figure  4.   Noise reduction effect under different decomposition layers

  • [1]

    CUI Q S, PAMUKCU S, LIN A, et al. Distributed temperature sensing system based on rayleigh scattering BOTDA[J]. Sensors Journal IEEE, 2011, 11(2):399-403. DOI: 10.1109/JSEN.2010.2066558

    [2]

    ZHANG C, YU W F, XIA M, et al. Analysis of optical signal characteristics of optical fiber stimulated Brillouin scattering[J]. Laser Technology, 2016, 40(3):363-366(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS201603013.htm

    [3]

    WANG Y Q, HE J, MA Y, et al.Effect of random noise on measurement of marine brillouin laser radar[J]. Laser Technology, 2015, 39(1):6-12(in Chinese).

    [4]

    DAKIN J P, PRATT D J, BIBBY G W, et al. Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector[J]. Electronics Letters, 1985, 21(13):569-570. DOI: 10.1049/el:19850402

    [5]

    FARAHANI M A, WYLIE M T V, CASTILLO-GUERRA E, et al. Reduction in the number of averages required in BOTDA sensors using wavelet denoising techniques[J]. Journal of Lightwave Technology, 2012, 30(8):1134-1142. DOI: 10.1109/JLT.2011.2168599

    [6]

    KE T B, LIN L, LI Y Q, et al.Study on denoising method of time-domain reflected signal in brillouin optical cable[J]. Laser Technology, 2014, 38(3):311-315(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS201403006.htm

    [7]

    WANG W, XIANG Z, WANG Z D.Denoising for optic gyroscope based on wavelet full frequeney-domain threshold processing[J]. Infrared and Laser Engineering, 2012, 41(12):3401-3405(in Chinese).

    [8]

    CHEN G, ZHU X F, XU Q Q, et al.Application of wavelet and sparse decomposition in discontinuous thin film denoising[J]. Laser Technology, 2014, 38(4):546-550(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201404022.htm

    [9]

    QUAN Z, ZHANG B H.Application of an improved wavelet threshold algorithm in laser interrogation[J]. Laser Technology, 2014, 38(2):218-224(in Chinese).

    [10]

    CHEN Y, CHENG Y, LIU H. Application of improved wavelet a-daptive threshold de-noising algorithm in FBG demodulation[J]. Optik-International Journal for Light and Electron Optics, 2017, 132(3):243-248. http://www.sciencedirect.com/science/article/pii/S0030402616316035

    [11]

    ZHAO L, LIU H, XU SH C, et al.Comparative study on the analysis of fiber vibration signals by HHT and CWT[J]. Laser Technology, 2017, 41(2):260-264(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201702023.htm

    [12]

    LIU L, YU M, YANG R J, et al. Wavelet de-noising for fiber Raman temperature sensing system[J]. Chinese Journal of Lasers, 2013, 40(6):0605005. DOI: 10.3788/CJL

    [13]

    CHEN S Y, LIU J X, DING Y.Study on fusion method of infrared and X-ray image based on wavelet transform[J]. Laser Technology, 2015, 39(5):685-688(in Chinese). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS201505021.htm

    [14]

    ZHAO R, GU G H, YANG W.Implementation of visible light image based on polarization imaging[J]. Laser Technology, 2016, 40(2):227-231(in Chinese).

    [15]

    ZHAO L J, LI Y Q.Research on temperature feature extraction of BOTDR system based on wavelet transform[J]. Electrical Measurement and Instrumentation, 2015, 52(1):19-23(in Chinese).

    [16]

    CAI Z H, CHEN W J, ZHONG M.Application of several wavelets in 3-Dimensional surface survey[J]. Laser Technology, 2015, 39(5):610-616(in Chinese).

    [17]

    FARAHANI M A, CASTILLO-GUERRA E, COLPITTS B G. Acce-leration of measurements in BOTDA sensors using adaptive linear prediction[J]. IEEE Sensors Journal, 2013, 13(1):263-272. DOI: 10.1109/JSEN.2012.2213153

    [18]

    ZHAO SH Q, PANG F F, HE M T, et al.Study on signal processing of optical fiber coherent optical time domain reflectometer based on gray image[J]. Chinese Journal of Lasers, 2015, 42(3):0305001(in Chinese). DOI: 10.3788/CJL

    [19]

    SOTO M A, RAMI'REZ J A, THÉVENAZ L.Intensifying Brillouin distributed fibre sensors using image processing[J].Proceedings of the SPIE, 2015, 9634:96342D. http://proceedings.spiedigitallibrary.org/article.aspx?articleid=2441957

    [20]

    LIU A L. Dual filtering algorithm for infrared image based on lifting wavelet transform[J]. Laser Technology, 2015, 39(4):545-548(in Chinese).

图(4)
计量
  • 文章访问数:  7
  • HTML全文浏览量:  0
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-06
  • 修回日期:  2017-08-24
  • 发布日期:  2018-05-24

目录

    /

    返回文章
    返回