高级检索

8-羟基喹啉铝本征薄膜的制备与性质研究

李瑞东, 刘雪凌, 杨健

李瑞东, 刘雪凌, 杨健. 8-羟基喹啉铝本征薄膜的制备与性质研究[J]. 激光技术, 2018, 42(1): 78-82. DOI: 10.7510/jgjs.issn.1001-3806.2018.01.015
引用本文: 李瑞东, 刘雪凌, 杨健. 8-羟基喹啉铝本征薄膜的制备与性质研究[J]. 激光技术, 2018, 42(1): 78-82. DOI: 10.7510/jgjs.issn.1001-3806.2018.01.015
LI Ruidong, LIU Xueling, YANG Jian. Preparation and study on characteristics of 8-hydroxy-quinoline aluminum film[J]. LASER TECHNOLOGY, 2018, 42(1): 78-82. DOI: 10.7510/jgjs.issn.1001-3806.2018.01.015
Citation: LI Ruidong, LIU Xueling, YANG Jian. Preparation and study on characteristics of 8-hydroxy-quinoline aluminum film[J]. LASER TECHNOLOGY, 2018, 42(1): 78-82. DOI: 10.7510/jgjs.issn.1001-3806.2018.01.015

8-羟基喹啉铝本征薄膜的制备与性质研究

基金项目: 

中国地震局教师科研基金资助项目 20120122

详细信息
    作者简介:

    李瑞东(1982-), 男, 硕士, 讲师, 主要研究领域为半导体光电薄膜材料与器件。E-mail:liruidong_hit@163.com

  • 中图分类号: O484

Preparation and study on characteristics of 8-hydroxy-quinoline aluminum film

  • 摘要: 8-羟基喹啉铝属于有机半导体材料,在太阳能电池应用领域有较为广阔的应用前景。为了研究8-羟基喹啉铝载流子输运动力学信息,在恒温条件下制备了8-羟基喹啉铝薄膜,采用X射线衍射分析方法对薄膜的性质进行了分析,采用渡越时间方法对影响其载流子迁移率的实验条件进行了理论分析和实验验证。结果表明,在308K~338K温度范围内,8-羟基喹啉铝的载流子输运规律符合浅陷阱模型;取样电阻小于15kΩ及光脉冲能量低于3.5μJ时,载流子渡越时间保持恒定,测试结果可靠。这一结果对有机太阳能电池的制备是有帮助的。
    Abstract: 8-hydroxy quinoline aluminum is an organic semiconductor material and has broad application prospect in the field of solar cell application. In order to study the transport dynamic information of carriers, 8-hydroxyl quinoline aluminum thin film was prepared under the condition of constant temperature. The method of X-ray diffraction was used to analyze the properties of the film and the method of time-of-flight(TOF) was used to study the experimental conditions affecting the carrier mobility by theoretical analysis and experimental verification. The results show that this method is feasible. The carrier transport law of 8-hydroxy quinoline aluminum in the temperature range of 308K~338K is in accordance with shallow trap model. When the sampling resistance is less than 15kΩ and pulse energy is less than 3.5μJ, the carrier TOF remains constant. The test results are reliable. The result is helpful for the preparation of organic solar cells.
  • Figure  1.   XRD for the samples of Alq3

    Figure  2.   Circuit principle diagram of TOF method

    Figure  3.   Relationship between mobility and temperature of the holes in Alq3

    Figure  4.   Relationship between mobility and temperature of the electrons in Alq3

    Figure  5.   Relationship between tTOF and R of the holes in Alq3

    Figure  6.   Relationship between tTOF and R of the electrons in Alq3

    Figure  7.   Relationship between tTOF and pulse energy of the electrons in Alq3

  • [1]

    SUNDAR V C, ZAUMSEIL J, PODZOROV V, et al. Elastomeric transistor stamps:reversible probing of charge transport in organic crystals[J]. Science, 2004, 303(5664):1644-1646. DOI: 10.1126/science.1094196

    [2]

    LUO Y, BRUN M, RANNOU P, et al. Growth of rubrene thin film, spherulites and nanowires on SiO2[J]. Physica Status Solidi, 2007, 204(6):1851-1855. DOI: 10.1002/pssa.v204:6

    [3]

    PARK S W, JEONG S H, CHOI J M, et al. Rubrene polycrystalline transistor channel achieved through in situ vacuum annealing[J]. Applied Physics Letters, 2007, 91(3):26-43. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ021944774/

    [4]

    DENG J X, KANG Ch L, YANG B, et al. Deposition and characterization of vacuum evaporated Rubrene films[J]. Chinese Journal of Vacuum Science and Technology, 2012, 32(8):678-681(in Ch-inese). http://d.old.wanfangdata.com.cn/Periodical/zkkx201208004

    [5]

    SHI Y M, ZHOU W, LU A Y, et al. Van der waals epitaxy of MoS2 layers using grapheme as growth templates[J]. Nano Letters, 2012, 12(6):2784-2791. DOI: 10.1021/nl204562j

    [6]

    YU L L, HAN W, LEE Y H, et al. Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics[J]. Nano Letters, 2014, 14(6):3055-3063. DOI: 10.1021/nl404795z

    [7]

    HUO N J, KANG J, WEI Zh M, et al. Novel and enhanced optoelectronic performances of multilayer MoS2-WS2 heterostructure transistors[J]. Advanced Functional Materials, 2014, 24(44):7025-7031. DOI: 10.1002/adfm.201401504

    [8]

    CHEN Y Q, ZHANG Ch T, ZHANG J H. Simulation of temperature field of graphene substrate fabricated by laser chemical vapor deposition[J]. Laser Technology, 2015, 39(5):648-653(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201505013

    [9]

    HOU Zh J, TANG X, LUO M W, et al. Study on laser-induced chemical liquid deposition Fe film[J]. Laser Technology, 2016, 40(1):136-140(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201601031

    [10]

    ZHANG N, ZHOU B Q, ZHANG L R, et al. Research of hot wire chemical vapor deposition and micro-structure of a-SiNx: H thin film[J]. Laser Technology, 2016, 40(3):413-416(in Chinese). http://cn.bing.com/academic/profile?id=fc1b2cff619f9f43377f242fd7e34762&encoded=0&v=paper_preview&mkt=zh-cn

    [11]

    LEE Y H, ZHANG X Q, ZHANG W J, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition[J]. Advanced Materials, 2012, 24(17):2320-2325. DOI: 10.1002/adma.201104798

    [12]

    SHI G, MEI L, GAO J S, et al. DUV LaF3 thin film deposited by IBS, thermal boat and electron beam evaporation[J]. Laser Technology, 2013, 37(5):592-595(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201305007

    [13]

    JIA F, CAO P J, ZENG Y X. Effect of substrate temperature on the properties of ZnO prepared with pulsed laser deposition method[J]. Laser Technology, 2010, 34(3):357-359(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS201003022.htm

    [14]

    LIU Q H, ZHANG Z H, LIU Zh Ch, et al. Study on measurement method of carrier mobility in weak photoconductive material[J]. Laser Technology, 2014, 38(4):445-448(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201404003

    [15]

    HUANG Ch H, LI F Y, HUANG Y Y. Optoelectronic functional ultrathin films[M]. Beijing:Peking University Press, 2004:238-298(in Chinese).

    [16]

    SCHER H, ELLIOTT W, MONTROL L. Anomalous transit-time dispersion in amorphous solids[J]. Physical Review, 1975, B12(6):2455-2477. http://cn.bing.com/academic/profile?id=4b6492487d7f972061455f8c3565f5d0&encoded=0&v=paper_preview&mkt=zh-cn

    [17]

    WU F, TIAN W J, ZHANG Zh M, et al. Organic electioluminescent device based on balanced carriers injection and transportation[J]. Thin Solid Films, 2000, 363(1):214-217.

    [18]

    BASSLER H. Hopping conduction in polymers[J]. International Journal of Modern Physics, 1994, B8(7):847-854. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_cond-mat%2f0407083

    [19]

    FORERO S, NGUYEN P H, BRUTTING W, et al. Charge carrier transport in poly(p-phenylenevinylene) light-emiting devices[J]. Physical Chemistry Chemical Physics, 1999, 1(8):1769-1776. DOI: 10.1039/a808614a

    [20]

    LIN P, LIANG Ch J, DENG Zh B, et al. Photovoltaic character of organic el devices MEH-PPV/Alq3[J]. Spectroscopy and Spectral Analysis, 2005, 25(1):23-25(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx200501009

图(7)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  0
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-08
  • 修回日期:  2017-04-19
  • 发布日期:  2018-01-24

目录

    /

    返回文章
    返回