高级检索

905nm InGaAs脉冲激光二极管驱动电流特性分析与测试

李勇军, 邹建, 甘泉露, 邓文剑

李勇军, 邹建, 甘泉露, 邓文剑. 905nm InGaAs脉冲激光二极管驱动电流特性分析与测试[J]. 激光技术, 2017, 41(6): 803-806. DOI: 10.7510/jgjs.issn.1001-3806.2017.06.007
引用本文: 李勇军, 邹建, 甘泉露, 邓文剑. 905nm InGaAs脉冲激光二极管驱动电流特性分析与测试[J]. 激光技术, 2017, 41(6): 803-806. DOI: 10.7510/jgjs.issn.1001-3806.2017.06.007
LI Yongjun, ZOU Jian, GAN Quanlu, DENG Wenjian. Analysis and measurement on drive current characteristics of 905nm InGaAs pulse laser diodes[J]. LASER TECHNOLOGY, 2017, 41(6): 803-806. DOI: 10.7510/jgjs.issn.1001-3806.2017.06.007
Citation: LI Yongjun, ZOU Jian, GAN Quanlu, DENG Wenjian. Analysis and measurement on drive current characteristics of 905nm InGaAs pulse laser diodes[J]. LASER TECHNOLOGY, 2017, 41(6): 803-806. DOI: 10.7510/jgjs.issn.1001-3806.2017.06.007

905nm InGaAs脉冲激光二极管驱动电流特性分析与测试

详细信息
    作者简介:

    李勇军(1988-), 男, 硕士研究生, 主要从事远距离激光测距方面的研究

    通讯作者:

    邹建, E-mail:zoujian@cqu.edu.cn

  • 中图分类号: TN248.4

Analysis and measurement on drive current characteristics of 905nm InGaAs pulse laser diodes

  • 摘要: 为了实现高功率905nm InGaAs脉冲激光二极管激光脉冲宽度和峰值功率可调,采用现场可编辑门阵列产生触发脉冲、集成模块EL7104C作为金属氧化物半导体场效应晶体管(MOSFET)驱动、以MOSFET为核心开关器件控制高压模块和储能电容之间充放电的方法,设计了脉冲激光二极管驱动电路,对驱动电流特性进行了理论分析和实验验证,取得了不同电容和高压条件下的电流脉宽和峰值数据,分析了具体变化关系,并以此进行了光谱和功率-电流特性测试。结果表明,影响驱动电流脉宽和峰值电流的关键因素是电容大小和充电高压,脉冲激光二极管驱动电流峰值在0A~40A、脉宽20ns~100ns时可控调节,脉冲激光二极管最大峰值功率输出可达40W,实现了脉冲式半导体激光器输出功率和脉冲宽度的可控调节。该设计与分析对近红外高功率脉冲激光器的可控驱动设计具有一定的实用参考意义。
    Abstract: In order to realize the adjustment of pulse width and peak power of a high power 905nm InGaAs pulse laser diode, field-programmable gate array (FPGA) was adopted to generate trigger pulse, the integrated module EL7104C was used as the driver of metal oxide semiconductor field effect transistor (MOSFET) and the switching device with MOSFET as the core was used to control the charging and discharging between the high voltage module and energy storage capacitor. The pulsed laser diode driver circuit was designed. The driving current characteristics were theoretically analyzed and experimentally verified. Pulse width and peak data were obtained under different capacitance and high voltage conditions. The specific change relationship was analyzed. The spectrum and power-current characteristics were tested. The results show that, the key factors affecting the driving current pulse width and peak current were the capacitor size and charging voltage. The pulse laser diode can be controlled with peak drive current from 0A to 40A and pulse width from 20ns to 100ns. The maximum peak power output of pulsed laser diode is up to 40W. The controllable modulation of output power and pulse width of a pulsed semiconductor laser is realized. The design and analysis have practical reference significance for the controllable driving design of near infrared high power pulsed lasers.
  • Figure  1.   Component of pulse laser diode drive circuit

    Figure  2.   Schematic diagram of FPGA trigger signal design

    Figure  3.   Waveform collected by logic analyzer

    Figure  4.   Drive circuit of pulse laser diode

    Figure  5.   Pulse current waveform

    Figure  6.   Relationship of peak current, pulse width and capacitance

    Figure  7.   Relationship of peak current, pulse width and high voltage

    Figure  8.   Relationship between relative light intensity and wavelength of 905nm InGaAs pulse laser diode

    图  9   Relationship between peak power and current of 905nm InGaAs pulse laser diode

  • [1]

    LIU F. Development and application of the pulsed LD rangefinder[J]. Infrared and Laser Engineering, 2003, 32(2): 10-14(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hwyjggc200302003

    [2]

    LIU X Sh, LIN J L, ZHANG H M, et al. The study of nanosecond pulsed diode laser driver[J]. Laser Technology, 2006, 30(4):111-114(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs200604032

    [3]

    WANG W, XIA L Sh, CHENG Y, et al. Laser diode driver used for triggering photoconductive semiconductor switch[J]. Journal of Terahertz Science and Electronic Information Technology, 2013, 11(1):150-160(in Chinese). http://d.wanfangdata.com.cn/Periodical/xxydzgc201301032

    [4]

    ZHAO Q, MENG Q A, JIANG Z W, et al. Study on parameter measurement precision of high energy laser beam with large aperture[J]. Laser Technology, 2015, 39(1):104-107(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201501020

    [5]

    JIANG X L. The research of vehicle anti-collision system based on the infrared laser ranging technology[D]. Changsha: Hunan University, 2011: 7-9(in Chinese).

    [6]

    LIU Y, ZOU J, XIE P Y, et al. A high-peak and narrow-width pulsed source of LD[J]. Piezoelectrics & Acoustooptics, 1992, 14(6):27-29(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000004846641

    [7]

    ZHANG X F, ZHAO K X, ZHANG S N. Design of waveform module in a pulse generator based on FPGA[J]. Journal of Changchun University of Technology, 2011, 32(3):56-60(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jlgxyxb201103012

    [8]

    ZHANG Y Ch, SUN L J, FU Sh Y, et al. Research on adjustable high power high pulse-repetition-frequency compact LD power supply[J].Laser Technology, 2012, 36(6):731-734(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201206005

    [9]

    GAO J B. Design of pulse semiconductor laser ranging circuit and system[D].Chengdu: University of Electronic Science and Technology of China, 2006: 19-23(in Chinese).

    [10]

    ZHANG Sh Q, LOU Q H, ZHOU J, et al. Design of drive circuit for continuously adjustable ns pulse LD[J]. Laser Technology, 2008, 32(4):396-398(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs200804030

    [11]

    SUN D G, TANG H F. Study on the PWM driver circuit of LD for laser fuze[J]. Laser Technology, 2007, 31(2):217-219(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS200702031.htm

    [12]

    SUN X X. The hardware design of pulse laser range finder[D].Chengdu: University of Electronic Science and Technology of China, 2014: 30-33(in Chinese).

    [13]

    DING R M. The circuit research of long distance ranging system based on high-frequency laser[D].Changsha: Zhongnan University, 2012: 16-17(in Chinese).

    [14]

    YANG Y, YU D H, WU Y F, et al. Design of a novel drive power for narrow pulse laser diode[J]. Chinese Journal of Lasers, 2011, 38(2):0202003(in Chinee). DOI: 10.3788/CJL

    [15]

    ZHU M, LU Y D, MAN Ch Y, et al. Peak power measurement of high power and high speed diode laser[J]. Journal of Optoelectronics·Laser, 2006, 17(11):64-66(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDZJ200611013.htm

    [16]

    HAN G, YAN B. Study on testing method for peak power and average power of pulse laser[J]. Industrial Measurement, 2008, 18(6):9-11(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-GYJL200806001.htm

  • 期刊类型引用(1)

    1. 陈诚,姜映红. 基于磁共振耦合的激光射束驱动无线充电装置设计. 激光杂志. 2020(09): 201-205 . 百度学术

    其他类型引用(4)

图(9)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  1
  • PDF下载量:  9
  • 被引次数: 5
出版历程
  • 收稿日期:  2016-11-24
  • 修回日期:  2016-12-22
  • 发布日期:  2017-11-24

目录

    /

    返回文章
    返回