高级检索

NSST域模糊逻辑的红外与可见光图像融合

葛雯, 姬鹏冲, 赵天臣

葛雯, 姬鹏冲, 赵天臣. NSST域模糊逻辑的红外与可见光图像融合[J]. 激光技术, 2016, 40(6): 892-896. DOI: 10.7510/jgjs.issn.1001-3806.2016.06.024
引用本文: 葛雯, 姬鹏冲, 赵天臣. NSST域模糊逻辑的红外与可见光图像融合[J]. 激光技术, 2016, 40(6): 892-896. DOI: 10.7510/jgjs.issn.1001-3806.2016.06.024
GE Wen, JI Pengchong, ZHAO Tianchen. Infrared and visible light images fusion of fuzzy logic on NSST domain[J]. LASER TECHNOLOGY, 2016, 40(6): 892-896. DOI: 10.7510/jgjs.issn.1001-3806.2016.06.024
Citation: GE Wen, JI Pengchong, ZHAO Tianchen. Infrared and visible light images fusion of fuzzy logic on NSST domain[J]. LASER TECHNOLOGY, 2016, 40(6): 892-896. DOI: 10.7510/jgjs.issn.1001-3806.2016.06.024

NSST域模糊逻辑的红外与可见光图像融合

基金项目: 

辽宁省科技厅工业攻关基金资助项目(2012216027);沈阳市科技计划资助项目(F13-096-2-00)

详细信息
    作者简介:

    葛雯(1972-),女,博士,副教授,现主要从事图像处理、航空电子信息的研究。E-mail:gewenbox72@sina.com

  • 中图分类号: TP391

Infrared and visible light images fusion of fuzzy logic on NSST domain

  • 摘要: 为了在红外与可见光图像融合时保留各自更多的细节信息,同时降低算法复杂度,采用了非下采样剪切波变换(NSST)和改进模糊逻辑的红外与可见光图像融合方法,利用NSST算法对红外图像和可见光图像分别进行多尺度、多方向稀疏分解,分别得到低频子带系数和高频子带系数。然后对低频子带系数采用基于改进的模糊柯西隶属函数的权值平均融合规则;对高频子带系数采用能量匹配度和视觉敏感度系数相结合的融合规则。最后对低频子带融合系数和高频子带融合系数执行NSST逆变换得到最终的融合图像,并进行了理论分析和实验验证。结果表明,此融合方法不仅可以保证融合清晰度,对缩短算法的运行时间也是有帮助的。
    Abstract: In order to retain more detail information and reduce the algorithm complexity when fusing the infrared and visible light images, a fusion algorithm based on non-subsampled shearlet transform (NSST) and improved fuzzy logic was proposed to decompose source images sparsely on multi-direction and multi-scale. Low-frequency subband coeffients and high-frequency subband coeffients were obtained. The improved average fusion method of fuzzy Cauchy membership function was adopted in low-frequency subband coeffients. The fusion rule of the combination of energy compatibility and visual sensitivity coefficient was used in high-frequency subband coeffients. Finally, fusion image was obtained after NSST inverse transformation. Experimental results show that the fusion method can not only guarantee the definition of fused image, but also shorten the running time of algorithm.
  • [1]

    LI J Sh, YANG W, ZHANG X M. Infrared image processing, analysis and fusion[M]. Beijing:Science Press, 2009:174-182(in Chinese).

    [2]

    ZHENG W, SUN X Q, LI Zh. Image fusion based on shearlet transform and region characteristics[J]. Laser Technology, 2015, 39(1):50-56(in Chinese).

    [3]

    FENG X, WANG X M. Fusion of infrared and visible images based on Shearlet transform[J].Journal of OptoelectronicsLaser, 2013, 24(2):384-390(in Chinese).

    [4]

    XING X X. Research the image fusion algorithm based on non-subsampled shearlet transform[D]. Changchun:Jilin University, 2014:69-77(in Chinese).

    [5]

    SHI Zh, ZHANU Zh, YUE Y G. Adaptive image fusion algorithm based on Shearlet transform[J]. Acta Photonica Sinica, 2013, 42(1):115-120(in Chinese).

    [6]

    XIE Y H. Multi-focus image fusion by improved shearlet transform[D]. Xi'an:Xidian University, 2013:37-43(in Chinese).

    [7]

    KONG W W, LEI Y J. Technique for image fusion based on NSST domain and human visual characteristics[J]. Journal of Harbin Engineer University, 2013, 34(6):777-782(in Chinese).

    [8]

    ZHANG L, LUO Ch G, ZHANG Y Y, et al. Fusion algorithm of infrared and visible images based on support value transform[J]. Laser Technology, 2015, 39(3):428-431(in Chinese).

    [9]

    LI G, WANG L, ZHANG R B. Infrared and visible image fusion based on feature energy[J]. Opto-Electronic Engineering, 37(3):83-87(in Chinese).

    [10]

    CHEN M Sh, CAI Zh Sh. Study on fusion of visual and infrared images based on NSCT[J]. Laser Optoelectronics Progress, 2015, 52(6):114-119(in Chinese).

    [11]

    HUANG X Q. Infrared and visible image fusion technology based on fuzzy logic[D]. Chongqing:Chongqing University, 2012:39-41(in Chinese).

    [12]

    ZHANG Y K. Research on shearlet-based SAR/IR image fusion[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2011:28-41(in Chinese).

    [13]

    WANG L Q, AN J W. Image fusion based on nonsubsampled Contourlet transform[J]. Computer Engineering and Application, 2008, 44(12):189-191(in Chinese).

    [14]

    DO M N, VETTERLI M. Contourlets:a directional multiresolution image representation[C]//International Conference on Image Processing.New York,USA:IEEE, 2002:357-360(in Chinese).

    [15]

    EASLEYG R, LABAT E D, LIM W Q. Optimally sparse image representations using shearlets[C]//Fortieth Asilomar Conference on Signal, Systems and Computers. New York, USA:IEEE, 2006:974-978.

    [16]

    YUAN Y H, ZHANG J J, CHANG B K, et al. Objective quality evaluation of visible and infrared color fusion image[J]. Optical Engineering, 2011, 50(3):33-45.

  • 期刊类型引用(7)

    1. 刘凯,王慧琴,吴萌,相建凯,卢英. 基于提升小波的古铜镜X光图像融合方法研究. 激光技术. 2020(01): 113-118 . 本站查看
    2. 王艳,杨艳春,党建武,王阳萍. 非下采样Contourlet变换域内结合模糊逻辑和自适应脉冲耦合神经网络的图像融合. 激光与光电子学进展. 2019(10): 121-129 . 百度学术
    3. 陈智勇,孙嘉. 区域分割下序列红外图像智能融合算法研究. 激光杂志. 2019(06): 74-77 . 百度学术
    4. 蔡怀宇,卓励然,朱攀,黄战华,武晓宇. 基于非下采样轮廓波变换和直觉模糊集的红外与可见光图像融合. 光子学报. 2018(06): 225-234 . 百度学术
    5. 胡文,王小华,朱怀毅. LNSST域灰度突变度的红外与可见光图像融合. 红外技术. 2018(06): 563-568 . 百度学术
    6. 高晶,陈晓臻. 基于AR动态图像的人物动作捕捉技术研究. 现代电子技术. 2018(08): 144-146+150 . 百度学术
    7. 郭佩瑜,张宝华. 基于引导滤波和模糊算法的红外背景抑制算法. 激光技术. 2018(06): 854-858 . 本站查看

    其他类型引用(6)

计量
  • 文章访问数:  6
  • HTML全文浏览量:  0
  • PDF下载量:  16
  • 被引次数: 13
出版历程
  • 收稿日期:  2015-08-16
  • 修回日期:  2015-11-02
  • 发布日期:  2016-11-24

目录

    /

    返回文章
    返回