Research progress on the high quantum efficiency mechanism of T2SL infrared detectors
-
摘要: 二类超晶格(T2SL)红外探测器灵敏度高、响应速度快,适用于更远距离成像、更高速度的运动目标追踪。量子效率(QE)是决定光电探测器能否高质量成像的关键指标之一,提高T2SL红外探测器的QE具有重要意义。为了更直观地理解T2SL红外探测器QE的提高方式,梳理了中长波T2SL红外探测器提高QE的方法,归纳了QE在不同调控手段下能达到的程度,重点讨论了能带结构设计、吸收层厚度设定、吸收层掺杂类型选择、材料改进等方面对T2SL红外探测器QE的影响情况,并对T2SL红外探测器高QE的研究现状和未来发展进行了展望。Abstract: Type-Ⅱsuperlattice (T2SL) infrared detector has high sensitivity and fast response speed, which is suitable for longer distance imaging and higher speed tracking of moving targets. Quantum efficiency (QE) is one of the key indicators to determine whether the photodetector can achieve high quality imaging, so it is of great significance to improve the QE of T2SL infrared detector. In order to have a more intuitive understanding of how T2SL infrared detector QE can be improved, the methods to improve QE of mid-long wave T2SL infrared detector were reviewed, and the extent to which QE can be achieved under different regulatory means were summarized. The effects of band structure design, absorption layer thickness setting, absorption layer doping type selection and material improvement on QE of T2SL infrared detectors are discussed, and the research status and future development of high QE of T2SL infrared detectors are also prospected.
-
Keywords:
- detector /
- type-Ⅱ superlattice /
- quantum efficiency /
- absorption layer
-
-
图 3 a—AOI界面As-Sb交换示意图[26] b—InAs/AlSb的理想能带结构电子和空穴在各层的对称分布[26] c—改进的带模型和载流子不对称分布示意图[26]
Figure 3. a—schematic diagram of As-Sb exchange at AOI interface[26] b—symmetrical distribution of electrons and holes in each layer of the ideal band structure of InAs/AlSb[26] c—schematic diagram of improved band model and carrier asymmetry distribution[26]
表 1 3种材料优缺点对比
Table 1 Comparison of advantages and disadvantages of three materials
材料 优点 缺点 MCT (1)迁移率高,光生少数载流子寿命长;
(2)QE高,暗电流低;
(3)覆盖2 μm~24 μm波段,波长可调。(1)Hg原子不稳定;
(2)当前工作温度低;
(3)产线专用、工艺复杂;
(4)衬底成本高,良率低,器件稳定性差;
(5)大面阵难度高,发展多色探测器困难。InSb (1)电子有效质量小、迁移率高,光生少数载流子寿命长,QE高;
(2)材料均匀性、稳定性高,成品率高;
(3)工艺兼容性强,成本低,易批产。(1)覆盖1.0 μm~5.5 μm波段,波长不可调;
(2)工作温度低,要求制冷成本高;
(3)暗电流大;
(4)不能发展长波、双色及多色探测器。T2SL (1)电子空穴空间分离,电子有效质量大,材料缺陷密度小,暗电流低,均匀性好;
(2)带隙可调,覆盖2 μm~30 μm波段;
(3)工艺兼容性强,成本低,成品率高,易批产;
(4)可高温工作;
(5)可制作大面阵,可发展双色、多色红外探测器。产业化时间有限,工程化经验需要积累。 表 2 InAs/InAsSb超晶格红外探测器的性能参数
Table 2 Performance parameters of InAs/InAs Sbsuperlattice infrared detector
-
[1] 叶振华, 陈奕宇, 张鹏. 碲镉汞红外探测器的前沿技术综述[J]. 红外, 2014, 35(2): 1-8. DOI: 10.3969/j.issn.1672-8785.2014.02.001 YE Zh H, CHEN Y Y, ZHANG P. Overview of latest technologies of HgCdTe infrared photoelectric detector[J]. Infared, 2014, 35(2): 1-8(in Chinese). DOI: 10.3969/j.issn.1672-8785.2014.02.001
[2] 赵俊, 王晓璇, 李雄军, 等. 碲镉汞红外探测器研究进展[J]. 中国科学: 技术科学, 2023, 53(9): 1419-1433. ZHAO J, WANG X X, LI X J, et al. Development of a mercury cadmium telluride infrared detector[J]. Scientia Sinica Technologica, 2023, 53(9): 1419-1433(in Chinese).
[3] 司俊杰. 基于InSb的新型红外探测器材料(特邀)[J]. 红外与激光工程, 2022, 51(1): 79-97. SI J J. Novel InSb-based infrared detector materials (invited)[J]. Infrared and Laser Engineering, 2022, 51(1): 79-97(in Chinese).
[4] 吕衍秋, 鲁星, 鲁正雄, 等. 锑化物红外探测器国内外发展综述[J]. 航空兵器, 2020, 27(5): 1-12. LU Y Q, LU X, LU Zh X, et al. Review of antimonide infrared detector development at home and abroad[J]. Aero Weaponry, 2020, 27(5): 1-12(in Chinese).
[5] 谢修敏, 徐强, 陈剑, 等. 锑化物Ⅱ类超晶格中远红外探测器的研究进展[J]. 激光技术, 2020, 44(6): 688-694. DOI: 10.7510/jgjs.issn.1001-3806.2020.06.007 XIE X M, XU Q, CHEN J, et al. Research progress on antimonide based type-Ⅱ superlattice mid-and long-infrared detectors[J]. Laser Technology, 2020, 44(6): 688-694 (in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2020.06.007
[6] 王国伟, 徐应强, 牛智川. 新型低维结构锑化物红外探测器的研究与挑战[J]. 中国科学: 物理学力学天文学, 2014, 44(4): 368-389. WANG G W, XU Y Q, NIU Zh Ch. Development of high-performance novel low-dimensional structure antimonide infrared FPAs: Cha-llenges and solutions[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2014, 44(4): 368-389(in Chinese).
[7] 孙童, 关晓宁, 张凡, 等. 基于k·p方法的二类超晶格红外探测器仿真进展[J]. 激光技术, 2023, 47(4): 439-453. DOI: 10.7510/jgjs.issn.1001-3806.2023.04.001 SUN T, GUAN X N, ZHANG F, et al. Progress in simulation of type-superlattice infrared detectors based on the k·p method[J]. Laser Technology, 2023, 47(4): 439-453(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2023.04.001
[8] ASPLUND C, von WURTEMBERG RM, LANTZ D, et al. Performance of mid-wave T2SL detectors with heterojunction barriers[J]. Infrared Physics & Technology, 2013, 59(6): 22-27.
[9] KIM J, YUAN H, KIMCHI J, et al. HOT MWIR InAs/InAsSb T2SL discrete photodetector development[J]. Proceedings of the SPIE, 2018, 10624: 108-115.
[10] HOGLUND L, ASPLUND C, von WURTEMBERG RM, et al. Ma-nufacturability of type-Ⅱ InAs/GaSb superlattice detectors for infrared imaging[J]. Infrared Physics & Technology, 2017, 84: 28-32.
[11] OGUZ F, ULKER E, ARSLAN Y, et al. High performance 15 μm pitch 640×512 MWIR InAs/GaSb type-Ⅱ superlattice sensors[J]. IEEE Journal of Quantum Electronics, 2021, 58(1): 1-6.
[12] ROBBERTO M, BAGGETT S M, HILBERT B, et al. The infrared detectors for the wide field camera 3 on HST[J]. Proceedings of the SPIE, 2004, 5499: 15-22.
[13] GARNETT J D, FARRIS M C, WONG S S, et al. 2K×2K molecular beam epitaxy HgCdTe detectors for the James Webb Space Telescope NIRCam instrument[J]. Proceedings of the SPIE, 2004, 5499: 35-46.
[14] SINGH A, PAL R. Performance of Hg1-xCdxTe infrared focal plane array at elevated temperature[J]. Semiconductor Science and Technology, 2017, 32(4): 045011.
[15] YUAN H, ZHANG J, KIM J, et al. High performance SWIR HgCdTe 320×256/30 μm FPAs at Teledyne Judson Technologies[J]. Proceedings of the SPIE, 2018, 10766: 109-119.
[16] HOANG A M. Theoretical design and material growth of Type-Ⅱ antimonide-based superlattices for multi-spectral infrared detection and imaging[D]. Evanston, Illinois, USA: Northwestern University, 2016.
[17] KROEMER H. The 6.1 family (InAs, GaSb, AlSb) and its heterostructures: A selective review[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 20(3/4): 196-203.
[18] POTEMSKI M, VIA L, BAUER G E W, et al. Magnetoexcitons in narrow GaAs/Ga1-xAlxAs quantum wells[J]. Physical Review, 1991, B43(18): 14707.
[19] COHEN-ELIAS D, ULIEL Y, KLIN O, et al. Short wavelength infrared InAs/InSb/AlSb type-Ⅱ superlattice photodetector[J]. Infrared Physics & Technology, 2017, 84: 82-86.
[20] FELDMANN J, SATTMANN R, GÖBEL E O, et al. Subpicosecond real-space charge transfer in type-Ⅱ GaAs/AlAs superlattices[J]. Physical Review Letters, 1989, 62(16): 1892-1895.
[21] BI H, HAN X, LIU L, et al. Atomic mechanism of interfacial-controlled quantum efficiency and charge migration in InAs/GaSb superlattice[J]. ACS Applied Materials & Interfaces, 2017, 9(32): 26642-26647.
[22] CAI C, ZHAO Y, CHANG F, et al. Understanding the role of interface in advanced semiconductor nanostructure and its interplay with wave function overlap[J]. Nano Research, 2020, 13(6): 1536-1543.
[23] ZHAO Y H, LIU L, BI H, et al. Quantum efficiency optimization by maximizing wave function overlap in type-Ⅱ superlattice photodetectors[J]. Nanoscale, 2017, 9(33): 11833-11840.
[24] MEYER J R, HOFFMAN C A, BARTOLI F J, et al. Type-Ⅱ quantum-well lasers for the mid-wavelength infrared[J]. Applied Physics Letters, 1995, 67(6): 757-759.
[25] WU Y, ZHANG Y, ZHAO Y, et al. Insights into growth-oriented interfacial modulation within semiconductor multilayers[J]. ACS Applied Materials & Interfaces, 2021, 13(23): 27262-27269.
[26] WU Y Y, ZHANG Y H, ZHANG Y, et al. Dual strategy of modulating growth temperature and inserting ultrathin barrier to enhance the wave function overlap in type-Ⅱ superlattices[J]. Nano Research, 2022, 15(6): 5626-5632.
[27] JIANG J K, WANG G W, WU D H, et al. High-performance infrared photodetectors based on InAs/InAsSb/AlAsSb superlattice for 3.5 μm cutoff wavelength spectra[J]. Optics Express, 2022, 30(21): 38208-38215.
[28] NGUYEN B M, HOFFMAN D, WEI Y, et al. Very high quantum efficiency in type-Ⅱ InAs/GaSb superlattice photodiode with cutoff of 12 μm[J]. Applied Physics Letters, 2007, 90(23): 231108.
[29] DELAUNAY P Y, RAZEGHI M. Noise analysis in type-Ⅱ InAs/GaSb focal plane arrays[J]. Journal of Applied Physics, 2009, 106(6): 063110.
[30] TIAN Z B, SCHULER-SANDY T, GODOY S E, et al. High-operating-temperature MWIR detectors using type Ⅱ superlattices[J]. Proceedings of the SPIE, 2013, 8867: 232-240.
[31] DELMAS M, HOGLUND L, IVANOV R, et al. HOT SWaP and HD detectors based on type-Ⅱ superlattices at IRnova[J]. Proceedings of the SPIE, 2022, 12107: 185-192.
[32] HOSTUT M, ERGUN Y. Quantum efficiency contributions for type-Ⅱ InAs/GaSb SL photodetectors[J]. Physica E: Low-dimensional Systems and Nanostructures, 2021, 130: 114721.
[33] SINGH A, PAL R. Performance simulation of unipolar InAs/InAs1-xSbx type-Ⅱ superlattice photodetector[J]. Journal of Electronic Materials, 2018, 47(9): 4653-4662.
[34] WU D, DURLIN Q, DEHZANGI A, et al. High quantum efficiency mid-wavelength infrared type-Ⅱ InAs/InAs1-xSbx superlattice photodiodes grown by metal-organic chemical vapor deposition[J]. Applied Physics Letters, 2019, 114(1): 011104.
[35] NGUYEN B M, BOGDANOV S, POUR S A, et al. Minority electron unipolar photodetectors basedon type Ⅱ InAs/GaSb/AlSb superlattices for very long wavelength infrared detection[J]. Applied Physics Letters, 2009, 95(18): 053519.
[36] CHEN G, HADDADI A, HOANG A M, et al. Demonstration of type-Ⅱ superlattice MWIR minority carrier unipolar imager for high operation temperature application[J]. Optics Letters, 2015, 40(1): 45-47.
[37] ASPLUND C, von WURTEMBERG R M, HOGLUND L. Modeling tools for design of type-Ⅱ superlattice photodetectors[J]. Infrared Physics & Technology, 2017, 84: 21-27.
[38] KAZEMI A, MYERS S, TAGHIPOUR Z, et al. Mid-wavelength infrared unipolar nBp superlattice photodetector[J]. Infrared Physics & Technology, 2018, 88: 114-118.
[39] HOGLUND L, NAUREEN S, IVANOV R, et al. Type-Ⅱ superla-ttices: Hot MWIR production and development at IRnova[J]. Proceedings of the SPIE, 2019, 11002: 166-172.
[40] SOIBEL A, TING D Z, FISHER A M, et al. Temperature dependence of diffusion length and mobility in mid-wavelength InAs/InAsSb superlattice infrared detectors[J]. Applied Physics Letters, 2020, 117(23): 231103.
[41] HAKALA M, PUSKA M J, NIEMINEN R M. Native defects and self-diffusion in GaSb[J]. Journal of Applied Physics, 2002, 91(8): 4988-4994.
[42] SVENSSON S P, DONETSKY D, WANG D, et al. Growth of type-Ⅱ strained layer superlattice, bulk InAs and GaSb materials for minority lifetime characterization[J]. Journal of Crystal Growth, 2011, 334(1): 103-107.
[43] BELENKY G, KIPSHIDZE G, DONETSKY D, et al. Effects of ca-rrier concentration and phonon energy on carrier lifetime in type-2 SLS and properties of InAs1-XSbX alloys[J]. Proceedings of the SPIE, 2011, 8012: 318-327.
[44] ALSHAHRANI D O, KESARIA M, ANYEBE E A, et al. Emerging type-Ⅱ superlattices of InAs/InAsSb and InAs/GaSb for mid-wavelength infrared photodetectors[J]. Advanced Photonics Research, 2022, 3(2): 2100094.
[45] CHEN K H, XU Z C, LIANG Z M, et al. Molecular beam epitaxy growth and characteristics of the high quantum efficiency InAs/GaSb type-Ⅱ superlattices MWIR detector[J]. Journal of Infrared and Millimeter Waves, 2022, 40(3): 285-289.
[46] ROGALSKI A, MARTYNIUK P, KOPYTKO M, et al. InAsSb-based infrared photodetectors: Thirty years later on[J]. Sensors, 2020, 20(24): 7047.
[47] TING D Z, RAFOL B, KEO S A, et al. InAs/InAsSb type-Ⅱ superlattice mid-wavelength infrared focal plane array with significantly higher operating temperature than InSb[J]. IEEE Photonics Journal, 2018, 10(6): 1-6.
[48] TING D Z, HILL C J, SOIBEL A, et al. Mid-wavelength high ope-rating temperature barrier infrared detector and focal plane array[J]. Applied Physics Letters, 2018, 113 (2): 021101.
[49] ARIYAWANSA G, DURAN J, REYNER C, et al. InAs/InAsSb strained-layer superlattice mid-wavelength infrared detector for high-temperature operation[J]. Micromachines, 2019, 10(12): 806.
[50] DENG G R, CHEN D Q, YANGSh P, et al. High operating tempe-rature pBn barrier mid-wavelength infrared photodetectors and focal plane array based on InAs/InAsSb strained layer superlattices[J]. Optics Express, 2020, 28(12): 17611-17619.
[51] WU, D H, LI J, DEHZANGI A, et al. High performance InAs/InAsSb type-Ⅱ superlattice mid-wavelength infrared photodetectors with double barrier[J]. Infrared Physics & Technology, 2020, 109: 103439.
[52] AROUNASSALAME V, BOUSCHET M, ALCHAAR R, et al. Electro-optical characterizations to study minority carrier transport in Ga-free InAs/InAsSb T2SL XBn midwave infrared photodetector[J]. Proceedings of the SPIE, 2021, 11866: 25-34.
[53] KIM Y H, LEE H J, KIM Y C, et al. Hot InAs/InAsSb nBn detector development for SWaP detector[J]. Proceedings of the SPIE, 2021, 11741: 164-168.
[54] HUANG J L, YAN Sh L, XUE T, et al. Mid-wavelength InAs/InAsSb superlattice photodetector with background limited performance temperature higher than 160 K[J]. IEEE Transactions on Electron Devices, 2022, 69(8): 4392-4395.
[55] GUO Ch Y, SUN Y Y, JIA Zh, et al. Visible-extended mid-infrared wide spectrum detector based on InAs/GaSb type-Ⅱ superlattices (T2SL)[J]. Infrared Physics & Technology, 2018, 89: 147-153.
[56] NORDIN L, PETLURU P, KAMBOJ A, et al. Ultra-thin plasmonic detectors[J]. Optica, 2021, 8(12): 1545-1551.