-
试验材料为3mm厚5052铝合金板材,H32热处理状态,化学成分如表 1所示。施焊前对其进行表面前处理,具体流程为砂纸打磨→碱洗除油后清水冲洗→酸洗去氧化层后清水冲洗→烘干保存。碱洗溶液为质量分数为0.05~0.10的NaOH酒精碱溶液,酸洗液为HF(质量分数为0.05)+HNO3(质量分数为0.30)水溶液。
Table 1. Chemical compositon (mass fraction) of 5052 aluminum alloy
element Si Fe Cu Mn Mg Cr Zn Al actual value 0.0012 0.0017 0.0005 0.0008 0.0230 0.0022 0.0003 balance -
实验中采用本实验室6kW激光加工机器人工作站,见图 1所示。激光器为德国Rofin FL060型光纤激光器,最大输出功率6kW,输出波长1.06μm,见图 1a。焊接单元分别为YW30型圆形高斯光束激光焊接头和HIGHYAG-BIMO型矩形平顶光束激光焊接头,见图 1b、图 1c。平顶光束经聚焦后最小光束尺寸为5mm×5mm,高斯光束焦点直径为0.6mm。运动机构为ABB公司IRB4600型机械手。施焊过程中采用体积分数为0.99999的高纯氩气进行气体保护。
-
分别采用圆形高斯光束与矩形平顶光束焊接单元进行激光对焊实验。为防止焊缝背面氧化及熔融态铝合金下漏,在具有双面保护的自制专用夹具上施焊。焊接时不仅在焊缝正面采用流量10L/min的氩气45°侧吹保护,而且在背面通流量为5L/min 4路氩气底吹气保护。
焊后,沿垂直于焊接方向截取检测试样,并按照常规金相试样制备方法制取金相试样,抛光后经V(HF): V(HNO3): V(H2O)=1: 2: 7的侵蚀液腐蚀,利用Nikon SZ6745-B1体视显微镜与ZEISS-AX10金相显微镜观测不同工艺参量下的焊缝表面宏观形貌与熔池形貌,并利用自带软件测量熔深、熔宽,进而分析高功率光纤激光焊接5052铝合金焊缝成形特征与工艺规律。
高功率光纤激光焊接铝合金焊缝成形特征研究
Research of characteristics of weld formation of aluminum alloy by high power fiber laser welding
-
摘要: 为了探究铝合金高功率光纤激光焊接焊缝成形特征与规律,采用高斯光束与平顶光束对3mm厚5052铝合金进行激光对焊,对比分析了不同光束模式下的焊缝成形特征与激光功率、扫描速率对焊缝成形的影响。结果表明,平顶光束焊接主要为热导模式,熔池呈U型,易产生气孔、裂纹等缺陷; 高斯光束焊接有4种模式,随着激光功率和扫描速率的变化,4种模式相互转化,深熔焊模式下,熔池形貌呈“丁字”型; 扫描速率为20mm/s时,高斯光束有效深熔焊的下、上临界功率密度分别为8.8×105W/cm2和9.2×105W/cm2; 激光功率为2.7kW时,高斯光束有效深熔焊的下、上线能量分别为77J/mm和90J/mm; 在满足深熔焊所需功率密度条件下,线能量可作为激光深熔焊接的一个判据,线能量和功率密度对焊接模式与熔池形貌共同起决定性作用。Abstract: To explore characteristics and rules of weld formation of aluminum alloy by high power fiber laser welding, 3mm-thick 5052 aluminum alloy was welded by laser with Gaussian and flat-topped beams respectively. The influence of weld formation characteristics, laser power and scanning speed on weld shape was analyzed comparatively. The results show that flat-top beam welding is mainly of thermal conductivity mode, and weld pool is U type, which is easy to produce pores, cracks and other defects. Gaussian beam welding has 4 modes. 4 modes are transformed mutually with the change of laser power and scanning rate. Weld pool is丁type under deep penetration mode. At scan rate of 20mm/s, the lower and upper critical power density of effective deep penetration welding of Gaussian beam are 8.8×105W/cm2 and 9.2×105W/cm2. With laser power of 2.7kW, the lower and upper critical power of effective deep penetration welding of Gaussian beam are 77J/mm and 90J/mm. Under the premise of the required welding power density, line energy can be used as the criterion of laser deep penetration welding. Line energy and power density play decisive role in welding mode and pool shape.
-
Key words:
- laser technique /
- flat-topped beams /
- Gaussian beam /
- weld appearance /
- weld shape
-
Table 1. Chemical compositon (mass fraction) of 5052 aluminum alloy
element Si Fe Cu Mn Mg Cr Zn Al actual value 0.0012 0.0017 0.0005 0.0008 0.0230 0.0022 0.0003 balance -
[1] LI Q Y, LUO Y, WANG Y J, et al. Microstructure and mechanical properties of twin spot laser welding of 5052 aluminum[J]. Transactions of the China Welding Institution, 2007, 28 (12):105-108(in Chinese). [2] SONG X H, JIN X Zh, CHEN Sh Q, et al. Progress of laser-arc hybrid welding and its applications in automotive body manufacture[J].Laser Technology, 2015, 39(2):259-264(in Chinese). [3] FAN D, JIANG K, YU Sh R, et al. Characteristic of fusion-brazed joint between 5052 aluminum alloy and zinc-coated steel by CO2 laser[J]. Transactions of the China Welding Institution, 2014, 35 (1):1-5(in Chinese). [4] WANG H L, HUANG W L, ZHOU Zh Y, et al. Laser welding of aluminum alloy 2007[J].Laser Technology, 2003, 27(2):103-105(in Chinese). [5] XIAO R Sh, CHEN K, ZUO T Ch. Development of laserbeam welding of high strength aluminum alloys[J].Applied Laser, 2002, 22(2):206-208(in Chinese). [6] ZHAN X H, CHEN J, TAO W, et al. Study on performance of 6156 skin butt joint with laser beam welding[J]. Transactions of the China Welding Institution, 2012, 33(12):37-40(in Chinese). [7] CUI L, ZHANG Y Ch, HE D Y, et al. Research progress of high power fiber laser welding[J]. Laser Technology, 2012, 36(2):154-159(in Chinese). [8] CUI L, HE D Y, LI X Y, et al. Research progress of laser-arc hybrid welding processing parameters[J]. Laser Technology, 2011, 35(1):65-70(in Chinese). [9] WANG W, WANG X Y, QIN G L, et al. Welding characteristics of laser-low power pulse MIG hybrid welding aluminium alloy[J]. Transactions of The China Welding Institution, 2007, 28(8):37-42(in Chinese). [10] CUI L, HE D Y, LI X Y, et al. Effects of welding direction on weld shape of fiber laser-MIG hybrid welded titanium alloys[J]. Chinese Journal of Lasers, 2011, 38(1):1-7(in Chinese). [11] MA Zh H, CHEN D G, LI N, et al. Analysis of porosity characteristics of 5052 aluminum alloy welded by hybrid CO2 laser-MIG welding[J]. Laser Technology, 2012, 36(6):780-782(in Chinese). [12] CHEN G Y, ZHOU Y, ZHANG M J, et al. Study on improving surface quality of weld of autogenously laser welding of thick plate with high power fiber laser[J]. Chinese Journal of Lasers, 2013, 40(11):1103011(in Chinese). doi: 10.3788/CJL [13] ZHAO L, SUSUMU T, GORO A, et al. Influence of welding parameters on weld depth and porosity in high power fiber laser welding[J].Chinese Journal of Lasers, 2013, 40(11):1103004(in Chinese). doi: 10.3788/CJL [14] YU Zh H, YAN H G, GUAN Zh G, et al. Effects of laser welding parameters on weld appearance and cracking tendency of high strength magnesium alloy[J]. the Chinese Journal of Nonferrous Metals, 2013, 23(6):1479-1488. [15] QIN G L, LIN Sh Y. Laser welding volume energy and its in fluence on weld penetration in laser deep penetration welding[J]. Transactions of the China Welding Institution, 2006, 27(7):74-77(in Chinese). [16] WANG J Ch, WANG X Zh, HUI S X. Research of linear heat input and laser focus position for laser welding HE130 titanium alloy[J]. Chinese Journal of Lasers, 2003, 30(2):179-180(in Chinese). [17] LIU D Y, LI D, LI K B, et al. Influence of laser with same line energy on the microstructure and properties of welded[J]. Laser & Optoelectronics Progress, 2015, 14(10):101402(in Chinese).