-
图 1是单次自相关仪测量原理图。两束具有一定宽度的激光脉冲在非线性晶体(例如β相偏硼酸钡(BaB2O4,BBO))中产生和频光(second-harmonic generation,SHG)信号,激光脉冲的宽度与产生的和频光信号的空间尺寸相关[17]:
$ \Delta x = \frac{{\tau \times {v_{\rm{g}}}}}{{\sin \varphi }} $
(1) 式中,Δx为和频光信号的空间宽度,τ为激光脉冲宽度,vg为激光脉冲的群速度,φ为两束激光脉冲夹角的半角。由(1)式可见,激光脉冲的时间宽度通过和频光信号转换到光束的空间尺寸,通过测量产生的和频光信号空间宽度以及参与和频的两脉冲夹角可以获得激光脉冲宽度信息。实际操作中,产生和频的两个激光脉冲的夹角不易准确测量,而且随着光路调节,夹角会有略微变化,因此通常不是直接测量夹角来得到激光脉冲宽度,而是采用自标定的方法。自标定原理如图 2所示。在T0时刻,两路激光延时相同,给两路激光的其中一路激光脉冲1提供延时t后,两路激光在晶体中重叠的位置将发生变化,因此产生的和频光信号会有位置的偏移,利用偏移量(x2-x1)除以延时t,获得和频光信号单位偏移量对应的时间尺度Δt。
实时飞秒激光单次测量研究
Study on real-time single-shot measurement of femtosecond laser
-
摘要: 为了能够对强场飞秒激光进行单发实时准确的测量,采用LabVIEW对单次自相关仪测量的数据进行实时分析处理,设计了实时在线测量飞秒激光脉冲的测量系统。在数据分析时,通过对图像处理区域的限制以及对图像数据积分极大地降低了信号的噪声,提高了测量的准确性。利用自标定方法在线标定自相关仪,实时获得激光脉冲宽度信息; 结合小尺寸像素CCD,获得单像素3.6fs的精度; 并利用自主搭建的设备,成功在线实时测量了中心波长800nm、脉宽约50fs的钛宝石激光脉冲。结果表明,基于LabVIEW的单次相关仪能够实时测量飞秒脉冲,且测量结果精度高、可靠性好。Abstract: In order to measure high intensity femtosecond laser with single-shot precisely in real-time, a real-time measurement system was designed via processing data from a single-shot autocorrelator with LabVIEW. The precision is highly improved with signal noise decreased by limiting image processing area and integrating the image data. The autocorrelator was calibrated on-line by means of self-calibration, and pulse duration was obtained in real time. The precision of 3.6fs per pixel was obtained with small-pixel-size CCD. Ti:sapphire laser with pulsewidth of 50fs and center wavelength of 800nm was measured in real-time with our developed device. The results prove that femtosecond pulses can be measured precisely in real-time with a single-shot autocorrelator based on LabVIEW.
-
Key words:
- ultrafast optics /
- pulse duration /
- single-shot autocorrelator /
- real-time measurement
-
-
[1] STRICKLAND D, MOUROU G. Compression of amplified chirped optical pulses[J].Optics Communications, 1985, 56(3):219-221. doi: 10.1016/0030-4018(85)90120-8 [2] MOUROU G, UMSTADER D. Development and applications of compact high-intensity lasers[J]. Physics of Fluids, 1992, B4(7):2315-2325. [3] LEDINGHAM K W, MCKENNA P, SINGHAL R P. Applications for nuclear phenomena generated by ultra-intense lasers[J]. Science, 2003, 300(5622):1107-1111. doi: 10.1126/science.1080552 [4] ZHANG J. High field physics—a new scientific arenas[J]. Physics, 1997, 26(11):643-649(in Chinese). [5] WANG Q Y. Femtosecond laser technology and its relative new subjects[J]. Journal of Quantum Electronics, 1994, 11(4):211-218(in Chinese). [6] MOUROU G A. Ultraintense lasers: relativistic nonlinear optics and applications[J]. Comptes Rendus de l'Académie des Sciences-Series Ⅳ-Physics, 2001, 2(10):1407-1414. doi: 10.1016/S1296-2147(01)01278-1 [7] MORA P. Physics of relativistic laser-plasmas[J]. Plasma Physics and Controlled Fusion, 2001, 43(12):A31-A37. [8] LI Y T, LIAO G Q, ZHAO G, et al. Progress and prospects of highenergy density physics driven by intense lasers[J].Scientia Sinica Physica, Mechanica & Astronomica, 2013, 43(7): 795-809(in Chinese). [9] STEINKE S, van TILBORG J, BENEDETTI C, et al. Multistage coupling of independent laser-plasma accelerators[J]. Nature, 2016, 530(7589):190-193. doi: 10.1038/nature16525 [10] WANG Z, LIU C, SHEN Z, et al. A high contrast 1.16 PW Ti:sapphire laser system combined with DCPA scheme and femtosecond optical-parametric amplifier[J]. Optical Letters, 2011, 36(16):3194-3196. doi: 10.1364/OL.36.003194 [11] SUNG J H, LEE S K, YU T J, et al. 0.1Hz 1.0PW Ti:sapphire laser[J]. Optics Letters, 2010, 35(18):3021-3023. doi: 10.1364/OL.35.003021 [12] CHUNG J H, WEINER A M. Ambiguity of ultrashort pulse shapes retrieved from the intensity autocorrelation and the power spectrum[J]. IEEE Journal on Selected Topics in Quantum Electronics, 2001, 7(4):656-666. doi: 10.1109/2944.974237 [13] YU H. Study on measurement of femtosecond laser pulse width[J]. Laser Technology, 2013, 37(5):679-681(in Chinese). [14] WANG X T, YIN D J, SHU A B, et al. Measure ultrashort pulsewidth with tot al reflection[J]. Chinese Journal of Lasers, 2004, 31(8):1018-1020(in Chinese). [15] SHANG Y, ZHU K, LIN Ch, et al. Progress of compact laser plasma accelerator in Peking University[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2013, 43(10):1282-1287(in Chinese). [16] YAN X Q, LIN C, LU H Y, et al. Recent progress of laser driven particle acceleration at Peking University[J]. Review Article Frontiers of Physics, 2013, 8(5):577-584. doi: 10.1007/s11467-013-0372-2 [17] ZHANG Z G. Femtolaser technolgy[M]. Beijing: Scienc Press, 2011:213-214(in Chinese). [18] SHAPIRO S L. Ultrashort light pulses[M]. 2nd ed. New York, USA: Springer-Verlag, 1984:85-88.