高级检索

实时飞秒激光单次测量研究

赵研英, 耿易星, 李荣凤

赵研英, 耿易星, 李荣凤. 实时飞秒激光单次测量研究[J]. 激光技术, 2017, 41(3): 342-345. DOI: 10.7510/jgjs.issn.1001-3806.2017.03.008
引用本文: 赵研英, 耿易星, 李荣凤. 实时飞秒激光单次测量研究[J]. 激光技术, 2017, 41(3): 342-345. DOI: 10.7510/jgjs.issn.1001-3806.2017.03.008
ZHAO Yanying, GENG Yixing, LI Rongfeng. Study on real-time single-shot measurement of femtosecond laser[J]. LASER TECHNOLOGY, 2017, 41(3): 342-345. DOI: 10.7510/jgjs.issn.1001-3806.2017.03.008
Citation: ZHAO Yanying, GENG Yixing, LI Rongfeng. Study on real-time single-shot measurement of femtosecond laser[J]. LASER TECHNOLOGY, 2017, 41(3): 342-345. DOI: 10.7510/jgjs.issn.1001-3806.2017.03.008

实时飞秒激光单次测量研究

基金项目: 

国家自然科学基金资助项目 11504009

详细信息
    作者简介:

    赵研英(1982-), 女, 工程师, 现主要从事超快飞秒及应用的研究。E-mail:zhaoyanying@pku.edu.cn

  • 中图分类号: O437

Study on real-time single-shot measurement of femtosecond laser

  • 摘要: 为了能够对强场飞秒激光进行单发实时准确的测量,采用LabVIEW对单次自相关仪测量的数据进行实时分析处理,设计了实时在线测量飞秒激光脉冲的测量系统。在数据分析时,通过对图像处理区域的限制以及对图像数据积分极大地降低了信号的噪声,提高了测量的准确性。利用自标定方法在线标定自相关仪,实时获得激光脉冲宽度信息; 结合小尺寸像素CCD,获得单像素3.6fs的精度; 并利用自主搭建的设备,成功在线实时测量了中心波长800nm、脉宽约50fs的钛宝石激光脉冲。结果表明,基于LabVIEW的单次相关仪能够实时测量飞秒脉冲,且测量结果精度高、可靠性好。
    Abstract: In order to measure high intensity femtosecond laser with single-shot precisely in real-time, a real-time measurement system was designed via processing data from a single-shot autocorrelator with LabVIEW. The precision is highly improved with signal noise decreased by limiting image processing area and integrating the image data. The autocorrelator was calibrated on-line by means of self-calibration, and pulse duration was obtained in real time. The precision of 3.6fs per pixel was obtained with small-pixel-size CCD. Ti:sapphire laser with pulsewidth of 50fs and center wavelength of 800nm was measured in real-time with our developed device. The results prove that femtosecond pulses can be measured precisely in real-time with a single-shot autocorrelator based on LabVIEW.
  • Figure  1.   Principle of single-shot autocorrelator

    Figure  2.   Principle of self-calibration

    Figure  3.   System of autocorrelator

    Figure  4.   Real-time measurement program of sing-shot autocorrelator

    Figure  5.   Self-calibration of single-shot autocorrelator

  • [1]

    STRICKLAND D, MOUROU G. Compression of amplified chirped optical pulses[J].Optics Communications, 1985, 56(3):219-221. DOI: 10.1016/0030-4018(85)90120-8

    [2]

    MOUROU G, UMSTADER D. Development and applications of compact high-intensity lasers[J]. Physics of Fluids, 1992, B4(7):2315-2325. DOI: 10.1063/1.860202

    [3]

    LEDINGHAM K W, MCKENNA P, SINGHAL R P. Applications for nuclear phenomena generated by ultra-intense lasers[J]. Science, 2003, 300(5622):1107-1111. DOI: 10.1126/science.1080552

    [4]

    ZHANG J. High field physics—a new scientific arenas[J]. Physics, 1997, 26(11):643-649(in Chinese). http://www.cqvip.com/qk/93763X/199711/2724855.html

    [5]

    WANG Q Y. Femtosecond laser technology and its relative new subjects[J]. Journal of Quantum Electronics, 1994, 11(4):211-218(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-LDXU404.000.htm

    [6]

    MOUROU G A. Ultraintense lasers: relativistic nonlinear optics and applications[J]. Comptes Rendus de l'Académie des Sciences-Series Ⅳ-Physics, 2001, 2(10):1407-1414. DOI: 10.1016/S1296-2147(01)01278-1

    [7]

    MORA P. Physics of relativistic laser-plasmas[J]. Plasma Physics and Controlled Fusion, 2001, 43(12):A31-A37. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0810.4014

    [8]

    LI Y T, LIAO G Q, ZHAO G, et al. Progress and prospects of highenergy density physics driven by intense lasers[J].Scientia Sinica Physica, Mechanica & Astronomica, 2013, 43(7): 795-809(in Chinese). http://adsabs.harvard.edu/abs/2013SSPMA..43..795L

    [9]

    STEINKE S, van TILBORG J, BENEDETTI C, et al. Multistage coupling of independent laser-plasma accelerators[J]. Nature, 2016, 530(7589):190-193. DOI: 10.1038/nature16525

    [10]

    WANG Z, LIU C, SHEN Z, et al. A high contrast 1.16 PW Ti:sapphire laser system combined with DCPA scheme and femtosecond optical-parametric amplifier[J]. Optical Letters, 2011, 36(16):3194-3196. DOI: 10.1364/OL.36.003194

    [11]

    SUNG J H, LEE S K, YU T J, et al. 0.1Hz 1.0PW Ti:sapphire laser[J]. Optics Letters, 2010, 35(18):3021-3023. DOI: 10.1364/OL.35.003021

    [12]

    CHUNG J H, WEINER A M. Ambiguity of ultrashort pulse shapes retrieved from the intensity autocorrelation and the power spectrum[J]. IEEE Journal on Selected Topics in Quantum Electronics, 2001, 7(4):656-666. DOI: 10.1109/2944.974237

    [13]

    YU H. Study on measurement of femtosecond laser pulse width[J]. Laser Technology, 2013, 37(5):679-681(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/wlxb201524020

    [14]

    WANG X T, YIN D J, SHU A B, et al. Measure ultrashort pulsewidth with tot al reflection[J]. Chinese Journal of Lasers, 2004, 31(8):1018-1020(in Chinese).

    [15]

    SHANG Y, ZHU K, LIN Ch, et al. Progress of compact laser plasma accelerator in Peking University[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2013, 43(10):1282-1287(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4f8f3ec262fbf59ef7ecf205d3262c7f

    [16]

    YAN X Q, LIN C, LU H Y, et al. Recent progress of laser driven particle acceleration at Peking University[J]. Review Article Frontiers of Physics, 2013, 8(5):577-584. DOI: 10.1007/s11467-013-0372-2

    [17]

    ZHANG Z G. Femtolaser technolgy[M]. Beijing: Scienc Press, 2011:213-214(in Chinese).

    [18]

    SHAPIRO S L. Ultrashort light pulses[M]. 2nd ed. New York, USA: Springer-Verlag, 1984:85-88.

图(5)
计量
  • 文章访问数:  2
  • HTML全文浏览量:  0
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-17
  • 修回日期:  2016-08-09
  • 发布日期:  2017-05-24

目录

    /

    返回文章
    返回